

LINEARITY & HYSTERESIS

Application Note

Rev 002 – 18/10/16 Mathieu Ackermann (mac@melexis.com)

1 SCOPE	1
2 HALL-EFFECT CURRENT SENSORS	2
2.1 CONVENTIONAL HALL SENSORS	2
2.2 IMC-HALL® SENSORS	3
3 FERROMAGNETIC MATERIALS	4
3.1 Reference geometry	4
3.2 LINEARITY ERROR	4
3.3 PERFORMANCE OVERVIEW	5
4 MAGNETIC CIRCUIT	6
4.1 Core-based solutions	6
4.2 PLANAR (SHIELD-BASED) SOLUTIONS	7

1 Scope

Application note describing the magnetic linearity error and hysteresis of current sensing solutions based on Melexis Hall-effect sensors in combination with ferromagnetic cores or shields. A comparison of various concepts, materials and geometries is presented through simulation and characterization results.

2 Hall-effect current sensors

2.1 Conventional Hall sensors

Conventional Hall sensors are typically used in combination with a ferromagnetic core, to measure the magnetic field proportional to the current flowing in a surrounded wire or bus bar.

Such sensors have no intrinsic magnetic saturation limit or hysteresis. The linearity error is typically below $\pm 0.25\%$ F.S. (± 5 mV) on the nominal output range (10 to 90%VDD). Outside this range, linearity error increases due to electrical saturation.

Figure 1: MLX91209 linearity error [mV] vs. output level [%VDD].

LINEARITY-HYSTERESIS APPLICATION NOTE

2.2 IMC-Hall® sensors

IMC-Hall® current sensors include an integrated magnetic concentrator on-chip made of a high permeability material. They can be mounted directly on top of a conductor to measure the in-plane magnetic field component with high signal-to-noise.

Table 1: Main properties of each IMC version.

Figure 2: Input-referred linearity error [µT] vs. external field [mT]

3 Ferromagnetic materials

3.1 Reference geometry

In order to compare the performance of the most commonly used ferromagnetic material types (SiFe, 50%NiFe and ferrite), this characterization was performed with cores made of these 3 materials, all with the same geometry (as described on Figure 3). The magnetic factor of this geometry is **0.25mT/A**.

Figure 3: Ferromagnetic core geometry and sensor position.

3.2 Linearity error

Linearity error is computed with reference to a linear forecast on the data set.

Figure 4: Linearity error $[\mu T]$ vs. applied current [A] for the 3 material types.

3.3 Performance overview

We typically recommend using 50%NiFe for its wide linear range and very low hysteresis.

Material type	Sat. current [A]	B _{SAT} (core) [mT]	B _{SAT} (air gap) [mT]	Hysteresis [µT]	Hysteresis [A]
SiFe	750	1500	187	1000	4
50%NiFe	650	1300	162	≤ 100	≤ 0.4
ferrite	250	500	65	100	0.4

Table 2: Performance of the 3 material types (geometry-independent values in bold).

Notes

 Hysteresis in µT is roughly inversely proportional to the air gap. Dividing by the magnetic factor in mT/A yields a value in Amps that can be considered geometry-independent (material related).

LINEARITY-HYSTERESIS APPLICATION NOTE

4 Magnetic circuit

4.1 Core-based solutions

The following equation is a good approximation of the magnetic field B seen by the sensor located in an air gap of size d, when a current I is flowing in the surrounded conductor. The formula holds true as long as the ferromagnetic material is operated in the linear (non-satured) region.

Figure 5 is a comparison of the linearity error for several typical core geometries made of 50%NiFe. These geometries are described by 3 key parameters: air gap size, in-plane, and out-of-plane thickness.

Figure 5: Linearity error [A] vs. current [A] for various core geometries made of 50%NiFe.

Notes

• Although the "perimeter" or average path length of the magnetic circuit has also a direct impact on the saturation limit, it has not been considered here because all the cores had similar diameters.

4.2 Planar (shield-based) solutions

The following equation is a good approximation of the magnetic field B seen by the sensor located in a shield with inner width w, when a current I is flowing in the surrounded bus bar. The formula holds true as long as the ferromagnetic material is operated in the linear (non-satured) region.

 $B[mT] = 1.25 \cdot \frac{I[A]}{w[mm]}$

Figure 6 is a comparison of the linearity error for several typical shield geometries made of 50%NiFe. These geometries are described by 2 key parameters: inner width and thickness.

Figure 6: Linearity error [A] vs. current [A] for various shield geometries made of 50%NiFe.

Notes

 The height and depth (out-of-plane) are not considered here, but were of similar dimension for all the shields (12-13mm height and depth).