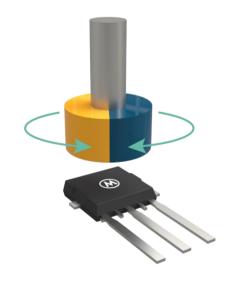

Triaxis® Position Sensor IC Datasheet

Melexis INNOVATION WITH HEART

Features and Benefits

- Triaxis® Hall Technology
- On-Chip Signal Processing for Robust Absolute Position Sensing
- ISO26262 ASIL-B Safety Element out of Context
- AEC-Q100 Qualified (Grade 0)
- Robust to external magnetic stray fields
- Programmable Measurement Range
- Programmable Linear Transfer Characteristic up to 17 points
- Ratiometric analog or PWM output
- Packages RoHS compliant
 - Single Die SOIC-8
 - PCB-less Single Die DMP-4 and SMP-3
 - TSSOP-16_EP package (stacked-dice)
 - SMP-4 package (stacked-dice)

Application Examples


- Pedal Position Sensor
- Throttle Position Sensor
- Ride Height Position Sensor
- Transmission Position Sensor
- Steering Wheel Position Sensor
- Non-Contacting Potentiometer

Description

The MLX90425 is a monolithic magnetic position sensor IC. It consists of a Triaxis® Hall magnetic front end, an analog-to-digital signal conditioner, a DSP for advanced signal processing and a programmable output stage driver.

The MLX90425 is sensitive to the differential magnetic field perpendicular to the IC surface (Z-axis). This allows the MLX90425, with the correct magnetic design, to decode the absolute position of a rotating on-axis magnet above or below the sensor (e.g. rotary position from 0° to 360°). It enables the design of non-contacting position sensors that are frequently required in automotive and industrial applications.

The MLX90425 provides either a ratiometric analog or a pulse width modulated (PWM) output. Programming the sensor, after assembly into the application, increases the accuracy of the system thanks to the multi-point programmable linearization function.

Angular Rotary – 360° Stray field Robust

Ordering Information

Product	Temp.	Package	Option Code	Packing Form	Definition
MLX90425	G	DC	ABA-600	RE	Angular Rotary 360° Stray field Robust Analog / PWM version
MLX90425	G	VE	ABA-600	RE/RX	Angular Rotary 360° Stray field Robust Analog / PWM version
MLX90425	G	VS	ABA-600	RE/RX	Angular Rotary 360° Stray field Robust Analog / PWM version
MLX90425	G	VS	ABA-603	RE/RX	Angular Rotary 360° Stray field Robust Analog / PWM version
MLX90425	G	VS	ABA-608	RE/RX	Angular Rotary 360° Stray field Robust Analog / PWM version
MLX90425	G	GO	BAA-600	RE	Angular Rotary 360° Stray field robust Analog/PWM version / Stacked-dice in TSSOP-16
MLX90425	G	VD	BAA-600	RE	Angular Rotary 360° Stray field robust Analog/PWM version / Stacked-dice in SMP4

Table 1 − Ordering codes

REVISION 004 - 30 Jan 2025 Page 2 of 66

Triaxis® Position Sensor IC

Temperature Code:	G: from -40°C to 160°C Some parts can be exposed to higher temperatures for a limited time (1)				
Package Code:	DC: SOIC-8 package (see 16.1) VE: SMP-3 package (PCB-less single mold, see 16.2) VS: DMP-4 package (See 16.3) GO: TSSOP-16_EP package (see 16.4) VD: SMP-4 package (PCB-less single mold, see 16.5)				
Option Code - Chip revision	AAA-123 : Chip Revision ABA: MLX90425 Single Die production version BAA: MLX90425 Stacked Dice production version				
Option Code - Application	AAA-123: 1-Application - Magnetic configuration 6: Angular Rotary 360° Stray field Robust				
Option Code	AAA-123: 2-Programming Option O: Standard (Analog output) programmable to PWM				
Option Code - Trim & Form	AAA-123: 3-DMP-4 Trim & Form configuration O: Standard S: Trim and Form STD2 2.54. See section 16.3.2 8: Trim and Form STD4 2.54. See section 16.3.3				
Packing Form:	-RE: Tape & Reel VE/VS: 2500 pcs/reel DC: 3000 pcs/reel GO: 4500 pcs/reel VD: 2500 pcs/reel -RX: Tape & Reel, similar to RE with parts face-down				
Ordering Example:	MLX90425GDC-ABA-600-RE For an analog version in SOIC-8 package, delivered in reels of 3000pcs.				

Table 2 – Ordering codes information

REVISION 004 - 30 Jan 2025 Page 3 of 66

¹ The devices can be used up to an ambient temperature of +180°C. For a description of the conditions, refer to the sub-sections labelled "High-temperature Extension" (4.1, 5.1, 8.2.1, 10.1.1, 10.2.3, 12.5.4).

Triaxis® Position Sensor IC

Contents

Features and Benefits	1
Application Examples	1
Description	1
Ordering Information	2
Functional Diagram and Application Modes	6
2. Glossary of Terms	7
3. Pin Definitions and Descriptions	8
3.1. Pin Definition for SOIC-8	8
3.2. Pin Definition for SMP-3	8
3.3. Pin Definition for DMP-4	8
3.4. Pin Definition for TSSOP-16_EP	9
3.5. Pin Definition for SMP-4	9
4. Absolute Maximum Ratings	10
4.1. High-Temperature Extension Absolute Maximum Ratings	10
4.2. Isolation Specification	11
5. General Electrical Specifications	11
5.1. High-Temperature Extension Electrical Specifications	13
6. Timing Specifications	14
6.1. General Timing Specifications	14
6.2. Continuous Acquisition Mode	14
6.3. Timing Definitions	15
6.4. Analog Output Timing Specifications	17
6.5. PWM Output Timing Specifications	17
7. Magnetic Field Specifications	18
7.1. Magnetic Field Specifications for MLX90425 Single Die	18
7.2. Magnetic Field Specifications for MLX90425 Stacked Dice	19
8. Accuracy Specifications	20
8.1. Definitions	20
8.2. Single die performances	21
8.3. Stacked dice performances	22
9. Memory Specifications	23
10. Output Protocol Description	23
10.1. Analog Output Description	23

Triaxis® Position Sensor IC

Datasheet

10.2. PWM Output Description	24
11. End-User Programmable Items	25
12. Description of End-User Programmable Items	29
12.1. Output modes and protocols	29
12.2. Output Transfer Characteristic	29
12.3. Sensor Front-End	34
12.4. Filtering	35
12.5. Programmable Diagnostics Settings	36
13. Functional Safety	39
13.1. Safety Manual	39
13.2. Safety Mechanisms	39
13.3. Fault Handling Time Interval	43
14. Recommended Application Diagrams	44
14.1. Wiring with the MLX90425 in SOIC-8 Package	44
14.2. Wiring with the MLX90425 in SMP-3 Package (built-in capacitors)	45
14.3. Wiring with the MLX90425 in DMP-4 Package (built-in capacitors)	46
14.4. Wiring with the MLX90425 in TSSOP-16_EP Package	47
14.5. Wiring with the MLX90425 in SMP-4 Package (built-in capacitors)	48
15. IC handling and assembly	49
15.1. Storage and handling of plastic encapsulated ICs	49
15.2. Assembly of encapsulated ICs	49
15.3. Soldering recommendations for the Exposed Pad (EP) in TSSOP-16	50
15.4. Environment and sustainability	50
16. Package Information	51
16.1. SOIC-8 — Package Information	51
16.2. SMP-3 – Package Information	53
16.3. DMP-4- Package Information	56
16.4. TSSOP-16_EP	59
16.5. SMP-4 Package Information	62
16.6. Packages Thermal Performances	65
17. Contact	66
18. Disclaimer	66

1. Functional Diagram and Application Modes

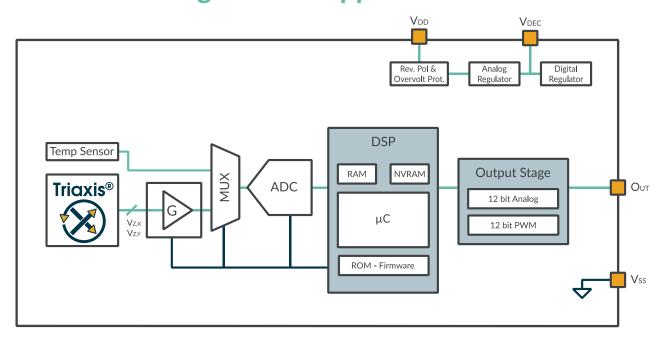


Figure 1 - MLX90425 Single Die and Stacked Dice Block diagrams.

Figure 2 – Application mode

REVISION 004 - 30 Jan 2025 Page 6 of 66

2. Glossary of Terms

Name	Description
ADC	Analog-to-Digital Converter
AWD	Absolute Watchdog
CPU	Central Processing Unit
CRC	Cyclic Redundancy Check
DAC	Digital-to-Analog Converter
%DC	Duty Cycle of the output signal i.e. Ton /(Ton + Toff)
DMP	Dual Mold Package
DP	Discontinuity Point
DCT	Diagnostic Cycle Time
DSP	Digital Signal Processing
ECC	Error Correcting Code
EMC	Electro-Magnetic Compatibility
EoL	End of Line
FHTI	Fault Handling Time Interval
FIR	Finite Impulse Response
Gauss (G)	Alternative unit for the magnetic flux density (10G = 1mT)
HW	Hardware
IMC	Integrated Magnetic Concentrator
INL / DNL	Integral Non-Linearity / Differential Non-Linearity
IWD	Intelligent Watchdog
LNR	LiNeaRization
LSB / MSB	Least Significant Bit / Most Significant Bit
N.C.	Not Connected
NVRAM	Non-Volatile RAM
PCB	Printed Circuit Board
POR	Power-On Reset
PSF	Product Specific Functions
PWL	Piecewise Linear
PWM	Pulse Width Modulation
RAM	Random Access Memory
ROM	Read-Only Memory
SEooC	Safety Element out of Context
SMP	Single-Mold Package with integrated discrete components (capacitors)
TC	Temperature Coefficient (generally in ppm/°C)
Tesla (T)	SI-derived unit for the magnetic flux density (Vs/m2)
TSSOP-16_EP	TSSOP-16 Exposed Pad

Table 3 – Glossary of terms

REVISION 004 - 30 Jan 2025 Page 7 of 66

3. Pin Definitions and Descriptions

3.1. Pin Definition for SOIC-8

Pin #	Name	Description		
1	V_{DD}	Supply		
2	Test ₁	For Melexis factory test		
3	Test ₂	For Melexis factory test		
4	N.C.	Not connected		
5	OUT	Output		
6	N.C.	Not connected		
7	V_{DEC}	Decoupling pin		
8	V_{SS}	Ground		

Table 4 – SOIC-8 pins definition and description

Test pins are internally grounded when in application mode. For optimal EMC behavior connect the Test and N.C. pins to the ground of the PCB.

3.2. Pin Definition for SMP-3

SMP-3 package offers advanced components integration in a single mold compact form.

Pin #	Name	Description
1	V_{DD}	Supply
2	OUT	Output
3	V_{SS}	Ground

Table 5 – SMP-3 pins definition and description

3.3. Pin Definition for DMP-4

DMP-4 package offers a pin-to-pin compatibility with the previous generation of Triaxis® products.

Pin #	Name	Description
1	V_{SS}	Ground
2	V_{DD}	Supply
3	OUT	Output
4	V_{SS}	Ground

Table 6 - DMP-4 pins definition and description

REVISION 004 - 30 Jan 2025 Page 8 of 66

3.4. Pin Definition for TSSOP-16_EP

Pin #	Name	Description		
1	N.C.	Not connected		
2	V_{DEC1}	Decoupling pin die 1 (2)		
3	OUT_1	Output die 1		
4	Test ₁₁	For Melexis factory test		
5	V_{SS1}	Ground die 1		
6	$V_{ t DD1}$	Supply die 1		
7	Test ₂₁	For Melexis factory test		
8	N.C.	Not connected		
9	V_{DEC2}	Decoupling pin die 2 (3)		
10	N.C.	Not connected		
11	OUT ₂	Output die 2		
12	Test ₁₂	For Melexis factory test		
13	V_{SS2}	Ground die 2		
14	V_{DD2}	Supply die 2		
15	Test ₂₂	For Melexis factory test		
16	N.C.	Not connected		

Table 7 – TSSOP-16_EP Pin definition and description

Test pins are internally grounded when in application mode. For optimal EMC behavior connect the Test and N.C. pins to the ground of the PCB.

3.5. Pin Definition for SMP-4

SMP-4 package offers a redundant stacked-dice package with advanced components integration in a single mold compact form.

Pin#	Name	Description
1	OUT1	Output (die 1)
2	V_{SS}	Ground (common to die 1 (2) and die 2 (3))
3	V_{DD}	Supply (common to die 1 and die 2)
4	OUT2	Output (die 2)

Table 8 – SMP-4 Pin definition and description

⁽²⁾ Die 1 – bottom die.

⁽³⁾ Die 2 – top die.

4. Absolute Maximum Ratings

Parameter		Symbol	Min	Max	Unit	Condition
Cupply Voltage	Positive	V_{DD}		28 37	V	< 48h < 60s; T _{AMB} ≤ 35°C
Supply Voltage	Reverse	V_{DD-rev}	-14 -18		V	< 48h < 1h
Resitive Output Voltage	Positive	V_{OUT}		28 34	V	< 48h < 1h
Positive Output Voltage	Reverse	$V_{OUT\text{-rev}}$	-14 -18		V	< 48h < 1h
Internal Voltage	Positive	V_{DEC}		3.6	V	< 1h
internal voltage	Reverse	$V_{DEC\text{-rev}}$	-0.3		V	< 1h
Positive Test ₁ pin Voltage	Positive	V_{Test1}		6	V	< 1h
Fositive Test ₁ pili voltage	Reverse	$V_{Test1-rev}$	-3		V	< 1h
Positive Test ₂ pin Voltage	Positive	V_{test2}		3.6	V	< 1h
Fositive Test2 pill voltage	Reverse	$V_{\text{test2-rev}}$	-0.3		V	< 1h
Operating Temperature		T_AMB	-40	+160	°C	
Junction Temperature (4)		TJ		+175	°C	
Storage Temperature		T_{ST}	-55	+170	°C	
Magnetic Flux Density		B_{max}	-1	1	Т	

Table 9 – Absolute maximum ratings

Exceeding any of the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.

4.1. High-Temperature Extension Absolute Maximum Ratings

The MLX90425 can be exposed to high temperature within the range [160, 180]°C for a limited duration. The device continues to operate with degraded performances according to the values listed in the following table. This extension is only valid for the DMP-4, SMP-3 and SMP-4 packages.

O	,		,		1 0
Parameter	Symbol Min		Max	Unit	Condition
Supply Voltage (5)	V_{DD}		5.5	V	T _{AMB} = 180°C
Reverse Voltage Protection	V_{DD-rev}	-14		V	T _{AMB} = 180°C, < 1h
Positive Output Voltage	V_{OUT}		26	V	T _{AMB} = 180°C, < 1h
Reverse Output Voltage	$V_{OUT\text{-rev}}$	-14		V	T _{AMB} = 180°C, < 1h
Operating Temperature	T_{AMB}	-40	180	°C	< 250h
Junction Temperature	TJ		190	°C	< 250h
Storage Temperature	T_{ST}	-55	190	°C	< 250h

Table 10 – High-temperature extension absolute maximum ratings for SMP-3 and SMP-4.

Exceeding any of the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.

REVISION 004 - 30 Jan 2025 Page 10 of 66

⁴ Find package thermal dissipation values in section 16.2

 $^{^{5}}$ Higher supply voltages will increase the die temperature above the max junction temperature T $_{
m J}$.

Datasheet

4.2. Isolation Specification

Valid for the TSSOP-16_EP packages.

Parameter	Symbol	Min	Тур	Max	Unit	Condition
Isolation Resistance	R _{isol}	4	-	-	МΩ	Between dice

Table 11 – Isolation resistance

5. General Electrical Specifications

General electrical specifications are valid for temperature range [-40, 160] °C and supply voltage range [4.5, 5.5] V unless otherwise noted.

Electrical Parameter	Symbol	Min	Тур.	Max	Unit	Condition
Supply Voltage	V_{DD}	4.5	5	5.5	V	
Supply Current	I_{DD}	8	10	11.5	mA	Single Die
		17	20	24	mA	Stacked Dice (6)
Start-up Level (rising)	$V_{DDstartH}$	3.85	4.00	4.15	V	
Start-up Hysteresis	$V_{DDstartHyst}$		100		mV	
PTC Entry Level (rising)	V_{PROV0}	5.85	6.05	6.25	V	Supply overvoltage detection
PTC Entry Level Hysteresis	$V_{PROV0Hyst}$	100	175	250	mV	
Under voltage detection	V_{DDUVL}	3.75	3.90	4.05	V	Supply voltage low threshold
Under voltage detection hysteresis	$V_{DDUVHyst}$		100		mV	
Regulated Voltage	V_{DEC}	3.2	3.3	3.4	V	Internal analog voltage

Table 12 – Supply system electrical specifications

REVISION 004 - 30 Jan 2025 Page 11 of 66

⁶ The stacked dice configuration necessitates minor design alterations to facilitate dice stacking, including the duplication of a subset of pads. These adjustments result in a minimal increase in current consumption per die.

MLX90425 Triaxis® Position Sensor IC

Datasheet

Datasneet						
Electrical Parameter	Symbol	Min	Тур.	Max	Unit	Condition
External Pull-up Voltage	V_{ext}			18 V _{DD}	V	Output Pull-up voltage in open-drain NMOS mode or analog mode Output Pull-up voltage in digital Push-Pull mode
Output Short-Circuit Current Limit	$I_{OUTshort}$	10		35	mA	
		5	10		kΩ	Analog output
Output Load	R_L	5		100	kΩ	Digital output in Push-Pull mode PWM pull-up to $V_{ext} = V_{DD}$, PWM pull-down to $0V$
		1.5 5 1.5		25 18 25	kΩ	Digital output in open-drain mode PMOS, pull-down to 0V NMOS, pull-up to $V_{ext} \le 18V$ NMOS, pull-up to $V_{ext} = V_{DD}$
Analog output Saturation Level (7)	V_{satA_lo}		0.5 3.3	1.2 7.4	%V _{DD}	Pull-up to V_{ext} $R_L \geq 10 \ k\Omega, \ V_{ext} \leq V_{DD}$ $R_L \geq 5 \ k\Omega \ to \ V_{ext} \leq 18V$
	V_{satA_hi}	97.0 95.0	99.0 98.0		%V _{DD}	Pull-down to 0V $R_L \geq 10 \ k\Omega$ $R_L \geq 5 \ k\Omega$
Digital output level push-pull mode (8)	V_{satD_lopp}			1.2	%V _{DD}	Pull-up to $V_{ext}\!\leq V_{DD},R_L\geq 10~k\Omega$
	V_{satD_hipp}	97.0 95.0			%V _{DD}	Pull-down to 0V, $R_L \ge 10 \ k\Omega$ Pull-down to 0V, $R_L \ge 5 \ k\Omega$
Digital output level open-drain mode	$V_{satLoOd}$	0		10	%V _{ext}	Pull-up to $V_{ext} \le 18V$, $I_L \le 3.4mA$
	$V_{satHiOd}$	90		100	%V _{DD}	Pull-down to 0V, $I_L \le 3.4$ mA
Output leakage in	$I_{leakpuOd}$			100	μΑ	Pull-up to $V_{ext} > V_{DD}$
Digital Open-drain & Hi-Z modes (8)	l _{leakpu}			20	μΑ	Pull-up to $V_{ext} = V_{DD}$
	l _{leakpd}			20	μΑ	Pull-down to 0V
Digital output Resistance	R_{on}	27	50	130	Ω	Valid for high and low digital levels

⁷ Typical values are representative of a temperature of 35°C and a supply voltage of 5V. Min-Max values are representative of a temperature of 160°C and a supply voltage of 4.5V.

⁸ The digital output level is thereby defined by the external voltage and pull-up or pull-down resistor.

MLX90425 Triaxis® Position Sensor IC

Datasheet

Electrical Parameter	Symbol	Min	Тур.	Max	Unit	Condition
Passive Diagnostic Output Level (Broken-Wire Detection)	BV _{SS} PD		1.2 0.5	4.0 1.6	%V _{DD}	Broken V_{SS} line and Pull-down to 0V, $R_L \le 25 \text{ k}\Omega$ Pull-down to 0V, $R_L \le 10 \text{ k}\Omega$
	$BV_{SS}PU$	99.5	100		%V _{DD}	Broken V_{SS} line and $\label{eq:Pull-up} \text{Pull-up to } V_{\text{ext}}\text{, } R_{\text{L}} \geq 1 k\Omega$
	$BV_{DD}PD$		0	0.5	%V _{DD}	Broken V_{DD} line and $Pull\mbox{-}down\ to\ 0V,\ R_L \geq 1\ k\Omega \label{eq:pull}$
	$BV_{DD}PU$	92.5 97.0	98.7 99.5		%V _{DD}	Broken V_{DD} line and Pull-up to V_{ext} , $R_L \le 25 \ k\Omega$ Pull-up to V_{ext} , $R_L \le 10 \ k\Omega$

Table 13 – Output electrical specifications

5.1. High-Temperature Extension Electrical Specifications

When the MLX90425 is exposed to high temperatures within the range [160, 180] °C and the supply voltage remains in the range [4.5, 5.5] V, the output pull-up voltage range shall remain within the limits of the supply voltage. This extension is only valid for the DMP-4, SMP-3 and SMP-4 packages.

Electrical Parameter	Symbol	Min	Тур	Max	Unit	Condition
External Pull-up Voltage	V_{ext}			V_{DD}	V	Output Pull-up voltage in open-drain NMOS mode or analog mode
Passive Diagnostic Output Level (Broken-Wire Detection)	BV_DDPU	92.5			%V _{DD}	Broken V_{DD} line and Pull-up to V_{ext} , $R_L \le 5 \text{ k}\Omega$

Table 14 – High-temperature electrical specifications

REVISION 004 - 30 Jan 2025 Page 13 of 66

6. Timing Specifications

Timing specifications are valid for temperature range [-40, 160] °C and supply voltage range [4.5, 5.5] V unless otherwise noted.

6.1. General Timing Specifications

Parameter	Symbol	Min	Тур.	Max	Unit	Condition
Main Clock Frequency	F _{CK}	22.8 -5	24	25.2 5	MHz %F _{ck}	Including thermal and lifetime drift
Main Clock initial tolerances	$\Delta F_{CK,0}$	-1		1	%F _{ck}	T=35°C, trimming resolution
Main Clock Frequency Thermal Drift	$\Delta F_{CK,T}$	-3.5		3.5	%F _{ck}	Relative to clock frequency at 35°C. Ageing effect not included
1MHz Clock Frequency	F _{1M}	0.95 -5	1	1.05 5	MHz %F _{1M}	Including thermal and lifetime drift
Analog Diagnostics DCT ⁽⁹⁾	DCT _{ANA}		11.8	12.4	ms	Continuous acquisition mode (see 6.2), for analog and PWM.
Digital Diagnostics DCT ⁽⁹⁾	DCT _{DIG}		18.7	19.7	ms	
Fail safe state duration (10)	T_{FSS}	5		33	ms	For digital single-event faults

Table 15 – General timing specifications

6.2. Continuous Acquisition Mode

In this mode, the sensor continuously acquires an angle at a fixed rate and updates its output when the information is ready. The acquisition rate is defined by the angle measurement period $T_{angleMeas}$. The PWM output frequency is asynchronous with the angle measurement sequence and controlled by the T_FRAME parameter.

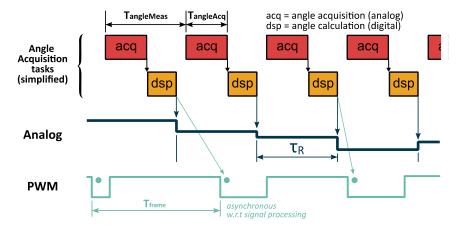


Figure 3 – Continuous Acquisition Timing Mode

REVISION 004 - 30 Jan 2025 Page 14 of 66

⁹ Max value includes the clock tolerances.

¹⁰ Programmable parameter. Defines the time between a reset due to digital fault to the first valid data. Min. value defined by OUT_DIAG_HIZ_TIME (see Table 32 in chapter 11 for details).

Datasheet

Parameter	Symbol	Min	Тур.	Max	Unit	Condition
Angle acquisition time	$T_{angleAcq}$		210		μs	Default factory settings
Internal Angle Measurement Period	$T_{angleMeas}$		512		μs	Default factory settings

Table 16 – Continuous acquisition timing mode

6.3. Timing Definitions

6.3.1. Start-up Time

In analog mode, the start-up time τ_{SU} is defined by the duration between rising of the supply voltage and the output being set to the voltage level of the measured angle. During the start-up phase, the sensor output remains in a high impedance state. The output driver is enabled only when the sensor is able to transmit a valid angle.

In PWM mode, the start-up phase consists of three phases of durations $T_{stup[1:3]}$. The first phase ends when the sensor output leaves high impedance state and starts to drive a voltage. The end of the second phase T_{stup2} is reached when an angle is ready to be transmitted and indicated by the first synchronization edge of the PWM signal. The start-up phase is considered complete after T_{stup3} when the first angle has been transmitted, which happens one PWM period after T_{stup2} .

These definitions are illustrated in the following figure (Figure 4) where τ_{init} represents the sensor internal initialization sequence.

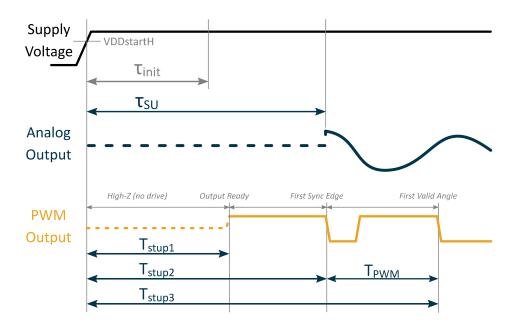


Figure 4 – Start-up time definition

6.3.2. Latency (average)

The sensor latency is the average lag between the movement of the detected object (magnet) and the response of the sensor output. This value is representative of the time constant of the MLX90425 when used in a regulation loop.

REVISION 004 - 30 Jan 2025 Page 15 of 66

Datasheet

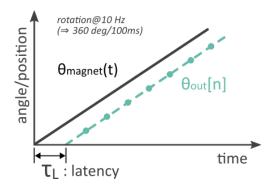


Figure 5 – Definition of latency

6.3.3. Step Response (worst-case)

The Step Response T_{wcStep} is defined as the maximal delay between a change of position of the magnet and the 100% settling time of the sensor output, with full angle accuracy with regards to filtering. This worst-case is happening when the movement of the magnet occurs just after a measurement sequence has begun. The Step Response consists of the sum of:

- \bullet $\delta_{\text{mag,measSeg}}$, the delay between the magnetic step and the end of the measurement sequence
- T_{angleMeas}, the internal angle measurement period
- $\delta_{\text{measSeq,trans}}$, the delay between the end of the measurement sequence and the beginning of the transmission of the angle information
- T_{trans}, the duration of the transmission of the angle information, which depends on the output protocol

The worst-case occurs when the magnetic step is just after the beginning of a measurement sequence. In other words, when $\delta_{mag,measSeq}$ equals the length of the measurement sequence $\tau_{measSeq}$. This gives:

$$T_{\text{wcStep}} = \tau_{measSeg} + T_{angleMeas} + \delta_{measSeg,trans} + T_{trans}$$

In analog output mode, the angle information is immediately available after the end of the internal measurement period and the transmission delay is negligible. The last two terms of the above equation can be nulled. When using a PWM output protocol, the last two terms of the equation are, in the worst-case condition, both equal to a PWM frame duration T_{PWM} . The Figure 6 shows a practical case of a step response for both an analog and PWM output.

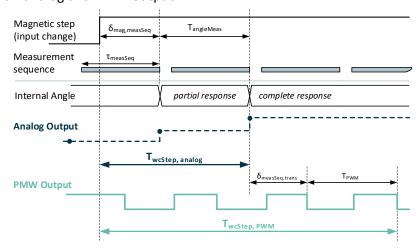


Figure 6 – Step response definition

6.4. Analog Output Timing Specifications

Parameter	Symbol	Min	Тур.	Max	Unit	Condition
Output refresh period (11)	$T_{angleMeas}$		512	538	μs	Default factory setting
Latency	τ_{L}		225	237	μs	Filter 0
			837	879		Filter 0,
Step response	T_{wcStep}		1349	1416	μs	Filter 1,
			2373	2492		Filter 2 (see 12.4 Filtering)
Start-up time	$ au_{SU}$		4.0	4.5	ms	
Safe start-up time ⁽⁹⁾	т.		16.8	17.7	mc	COLD_SAFE_STARTUP_EN = 1
Sale Start-up tillie	$T_{SafeStup}$		10.0	17.7	ms	(see Table 32)
Slew-rate	S_R	90			V/ms	C _{OUT} = 100nF

Table 17 – Analog output timing specifications

6.5. PWM Output Timing Specifications

For the parameters in below table, maximum timings correspond to minimal frequencies and vice versa.

Parameter	Symbol	Min	Тур.	Max	Unit	Condition
PWM Frequency	F_{PWM}	100		2000	Hz	
PWM Frequency Initial Tolerances	$\Delta F_{PWM,0}$	-1		1	%F _{PWM}	T=35°C, can be trimmed at EOL
PWM Frequency Thermal Drift	$\Delta F_{\text{PWM,T}}$	-3.5		3.5	$%F_{PWM}$	
PWM Frequency Drift	ΔF_{PWM}	-5		5	%F _{PWM}	Over temperature and lifetime
PWM start-up time (12)	T_{stup1}		4.1		ms	Default factory setting Up to output ready
	T _{stup2}		5.2		ms	Default factory setting Up to first sync. Edge $T_{stup1} + T_{PWM}$
	T _{stup3}		6.3		ms	Default factory setting Up to first data received $T_{stup2} + T_{PWM}$
PWM Safe start-up time			18.5	19.5	ms	F _{PWM} = 1kHz, up to first edge. COLD_SAFE_STARTUP_EN = 1 (see Table 32)

Table 18 – PWM timing specifications

REVISION 004 - 30 Jan 2025 Page 17 of 66

 $^{^{11}}$ In analog mode, the output refresh period matches the internal angle measurement period.

¹² Typ. value specified according to the typical PWM frequency. Max. value can be obtained by scaling with the PWM frequency drift accordingly.

7. Magnetic Field Specifications

Magnetic field specifications are valid for temperature range [-40, 160] °C unless otherwise noted.

7.1. Magnetic Field Specifications for MLX90425 Single Die

Parameter	Symbol	Min	Тур.	Max	Unit	Condition
Number of magnetic poles	N_P		2			
Magnetic Flux Density in Z	B _z			130	mT	in absolute value
Useful Magnetic Flux Density Norm	ΔB_z	10 ⁽¹³⁾	20	150	mT mm	$\sqrt{\left(\frac{\Delta B_Z}{\Delta X}\right)^2 + \left(\frac{\Delta B_Z}{\Delta Y}\right)^2}$ see 12.3 for sensing mode description.
Hall Plates spacing	ΔΧ, ΔΥ		1.70		mm	Distance between the two hall plates of a measurement axis.
Magnet Temperature Coefficient	TC_m	-2400		0	ppm °C	
Fieldstrength Resolution	$\Delta B_{z,norm}$	0.075	0.1	0.125	$\frac{mT}{mm \ LSB}$	
Field Too Low Threshold	$\Delta B_{Z,TH_LOW}$	2	3	15	$\frac{\text{mT}}{\text{mm}}$	Typ. is recommended value to be set by user (see 12.5.5)
Field Too High Threshold	$\Delta B_{z,TH_HIGH}$	100	145	310	$\frac{\text{mT}}{\text{mm}}$	Typ. is recommended value to be set by user (see 12.5.5)

Table 19 – Magnetic specifications for standard application

The magnetic performances are listed in chapter 8.2. The Figure 7 defines under which conditions nominal or high-temperature performances apply.

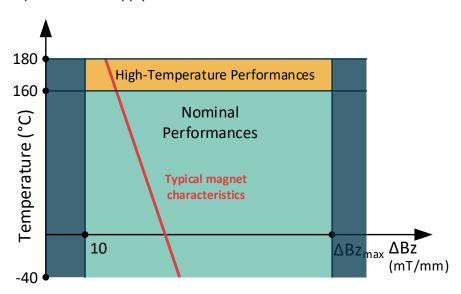


Figure 7 – Useful magnetic signal definition for single die

REVISION 004 - 30 Jan 2025 Page 18 of 66

¹³ Only valid under the conditions of Figure 7. Outside of the "Limited Performances" zone, the performances are further degraded due to a reduction of the signal-to-noise ratio and signal-to-offset ratio.

7.2. Magnetic Field Specifications for MLX90425 Stacked Dice

Parameter	Symbol	Min	Тур.	Max	Unit	Condition
Number of magnetic poles	N _P		2			
Magnetic Flux Density in Z	B _z			130	mT	in absolute value
Useful Magnetic Flux Density Norm	ΔB_z	12 (14)	20	168	$\frac{\text{mT}}{\text{mm}}$	$\sqrt{\left(\frac{\Delta B_Z}{\Delta X}\right)^2 + \left(\frac{\Delta B_Z}{\Delta Y}\right)^2}$
Hall Plates spacing	ΔΧ, ΔΥ		1.55		mm	Distance between the two hall plates of a measurement axis.
Magnet Temperature Coefficient	TC _m	-2400		0	ppm °C	
Fieldstrength Resolution	$\Delta B_{z,norm}$	0.075	0.1	0.125	$\frac{\text{mT}}{\text{mm LSB}}$	
Field Too Low Threshold	$\Delta B_{Z,TH_LOW}$	2	3	15	$\frac{\text{mT}}{\text{mm}}$	Typ. is recommended value to be set by user
Field Too High Threshold	$\Delta B_{Z,TH_HIGH}$	100	160	310	$\frac{\text{mT}}{\text{mm}}$	Typ. is recommended value to be set by user

Table 20 – Magnetic specifications for standard application

The magnetic performances are listed in chapter 8.3. The Figure 8 defines under which conditions nominal or high-temperature performances apply.

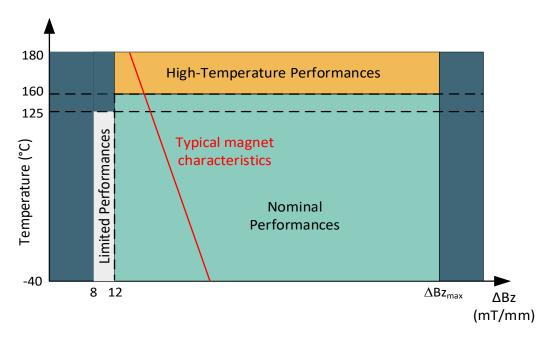


Figure 8 – Useful magnetic signal definition for stacked dice

REVISION 004 - 30 Jan 2025 Page 19 of 66

⁽¹⁴⁾ Only valid under the conditions of Figure 8. Outside of the "Limited Performances" zone, the performances are further degraded due to a reduction of the signal-to-noise ratio and signal-to-offset ratio.

8. Accuracy Specifications

Accuracy specifications are valid for temperature range [-40, 160] °C and supply voltage range [4.5, 5.5] V unless otherwise noted.

8.1. Definitions

8.1.1. Intrinsic Linearity Error

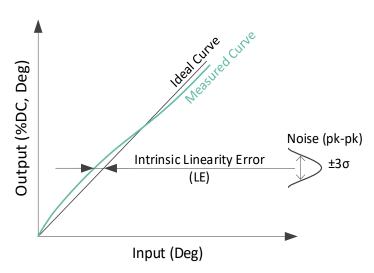


Figure 9 – Sensor accuracy definition

The illustration of Figure 9 depicts the intrinsic linearity error in new parts. The Intrinsic Linearity Error refers to the error sources of the IC (offset, sensitivity mismatch, orthogonality error) considering an ideal magnetic field. Once associated to a practical magnetic construction and its respective mechanical and magnetic tolerances, the output linearity error increases. The linearity error can be improved with the multi-point end-user calibration (see 12.2). As a consequence, this error is not the critical factor in application when it is calibrated away.

8.1.2. Total Angle Drift

After calibration, the output angle of the sensor might still change due to temperature change and aging. This error is defined as the total drift $\partial\theta_{TT}$:

$$\partial \theta_{TT} = \max\{\theta(\theta_{IN}, T, t) - \theta(\theta_{IN}, T_{RT}, t_0)\}$$

where θ_{IN} is the input angle, T is the temperature, T_{RT} is the room temperature, and t is the elapsed lifetime after calibration. t_0 represents the start of the sensor operating life. Note that the total drift $\partial\theta_{TT}$ is always defined with respect to the angle at room temperature. In this datasheet, T_{RT} is typically defined at 35°C unless stated otherwise. The total drift is valid for all angles along the full mechanical stroke.

REVISION 004 - 30 Jan 2025 Page 20 of 66

8.2. Single die performances

Valid before EoL calibration and for all applications under nominal performances conditions described in chapter 5 and chapter 7.

Parameter	Symbol	Min	Тур.	Max	Unit	Condition
Intrinsic Linearity Error	$L_{\text{E}_\Delta\text{BZ}}$	-1.2		1.2	Deg.	
			0.40	0.50		Filter = 0, $\Delta B_z \ge 10$ mT/mm
Noise (15)			0.19	0.24	Deg.	Filter = 0, $\Delta B_z \ge 20$ mT/mm
			0.20	0.25		Filter = 2, $\Delta B_z \ge 10$ mT/mm
Total Drift (16)	$\partial \theta_{TT_XY}$	-0.9		0.9	Deg.	Relative to 35°C
Hysteresis (17)				0.1	Deg.	$\Delta B_z \ge 10 mT$
Stray Field Immunity				0.35	Deg.	$\Delta B_z \ge 20 mT/mm$ In accordance with ISO11452-8:2015, at 30°C with stray field of 4kA/m from any direction

Table 21 – Nominal magnetic performances

8.2.1. High-Temperature Extension Performances

When the MLX90425 is exposed to high temperatures within the range [160, 180] °C and the supply voltage remains in the range [4.5, 5.5] V, the following magnetic performances apply.

Parameter	Symbol	Min	Тур.	Max	Unit	Condition
Intrinsic Linearity Error	L _{E_ΔBZ}	-1.4		1.4	Deg.	
			0.48	0.60		Filter = 0, $\Delta B_z \ge 10$ mT/mm
Noise (15)			0.24	0.30	Deg.	Filter = 0, $\Delta B_z \ge 20$ mT/mm
			0.24	0.30		Filter = 2, $\Delta B_z \ge 10$ mT/mm
Total Drift (16)	$\partial \theta_{TT_XY}$	-1.1		1.1	Deg.	Relative to 35°C
Hysteresis (17)				0.1	Deg.	$\Delta B_z \ge 10 mT/mm$
Stray-Field Immunity				0.35	Deg.	$\Delta B_z \ge 20 mT/mm$ In accordance with ISO11452-8:2015, at 30°C with stray field of 4kA/m from any direction

Table 22 – High-temperature magnetic performances for single die

¹⁶ Verification done on new and aged devices in an ideal magnetic field. An additional application-specific error arises from the non-ideal magnet and mechanical tolerance drift.

REVISION 004 - 30 Jan 2025 Page 21 of 66

¹⁵ **+3**0

¹⁷ The MLX90425 has no IMC and therefore no intrinsic source of magnetic hysteresis.

8.3. Stacked dice performances

8.3.1. Nominal Performances

Valid before EoL calibration and for all applications under nominal performances conditions (chapter 7).

Parameter	Symbol	Min	Тур.	Max	Unit	Condition
Intrinsic Linearity Error	$L_{E_\Delta BZ}$	-1.3		1.3	Deg.	
Noise (15)			0.40 0.28 0.20	0.50 0.35 0.25	Deg.	Filter = 0, $\Delta B_z \ge 12 mT/mm$ Filter = 0, $\Delta B_z \ge 20 mT/mm$ Filter = 2, $\Delta B_z \ge 12 mT/mm$
Total Drift (16)	$\partial heta_{TT_XY}$	-1.0		1.0	Deg.	Relative to 35°C
Hysteresis (17)				0.1	Deg.	$\Delta B_z \ge 12 mT$
Stray Field Immunity				0.35	Deg.	$\Delta B_z \ge 20 mT/mm$ In accordance with ISO11452-8:2015, at 30°C with stray field of 4kA/m from any direction

Table 23 – Nominal magnetic performances

8.3.2. Limited Performances

Valid before EoL calibration and for all applications under limited performances conditions (see section 7.2).

Parameter	Symbol	Min	Тур.	Max	Unit	Condition
Intrinsic Linearity Error	$L_{E_\Delta BZ}$	-1.3		1.3	Deg.	
Noise (15)			0.52 0.40 0.26	0.65 0.50 0.33	Deg.	Filter = 0, $\Delta B_z \ge 8mT/mm$, 125 °C Filter = 0, $\Delta B_z \ge 12mT/mm$, 160 °C Filter = 2, $\Delta B_z \ge 8mT/mm$, 125 °C
Total Drift (16)	$\partial \theta_{TT_XY}$	-1.0		1.0	Deg.	Relative to 35°C
Hysteresis (17)				0.1	Deg.	$\Delta B_z \ge 10 mT$
Stray Field Immunity				0.7	Deg.	$\Delta B_z \ge 10 mT/mm$ In accordance with ISO11452-8:2015, at 30°C with stray field of 4kA/m from any direction

Table 24 – Limited magnetic performances

8.3.3. High-Temperature Extension Performances

When the MLX90425 is exposed to high temperatures within the range [160, 180] °C and the supply voltage remains in the range [4.5, 5.5] V, the following magnetic performances apply. This extension is only valid for the DMP-4, SMP-3 and SMP-4 packages.

REVISION 004 - 30 Jan 2025 Page 22 of 66

Parameter	Symbo	Min	Тур.	Max	Unit	Condition
Intrinsic Linearity Error	L_{E_\DeltaBZ}	-1.3		1.3	Deg.	
Noise (15)				0.4 0.7	Deg.	Filter = 0, ΔB_z = 20mT/mm, 180°C Filter = 0, ΔB_z = 12mT/mm, 180°C
Total Drift (16)	$\partial heta_{TT_XY}$	- 1.0		1.0	Deg.	Relative to 35°C
Hysteresis (17)				0.1	Deg.	$\Delta B_z \ge 10 mT/mm$

Table 25 – High-temperature magnetic performances

9. Memory Specifications

Parameter	Symbol	Value	Unit	Note
ROM	ROMsize	16	kB	1-bit parity check per 32-bit word (single error detection)
RAM	RAMsize	512	В	1-bit parity check per 16-bit word (single error detection)
NVRAM	NVRAMsize	128	В	6-bit ECC per 16-bit word (single error correction, double error detection)

Table 26 – Memory specifications

10. Output Protocol Description

10.1. Analog Output Description

Parameter	Symbol	Min	Тур.	Max	Unit	Condition
Thermal analog output Drift				0.2	$%V_{DD}$	
			12		bit	12-bit DAC (theoretical)
Analog Output Resolution	R_{DAC}	-4		+4	LSB12	INL (before EoL calibration), output between 3-97%V _{DD}
		-1.0		1.5	LSB12	DNL
Ratiometric Error		-0.05 -0.1		0.05 0.1	$%V_{DD}$	$4.5V \le V_{DD} \le 5.5V$ $V_{DDUVL} < V_{DD} < V_{PROVO}$

Table 27 – Analog output accuracy

REVISION 004 - 30 Jan 2025 Page 23 of 66

10.1.1. High-Temperature Extension Analog Output Description

When the MLX90425 is exposed to high-temperatures within the range [160, 180] °C and the supply voltage remains in the range [4.5, 5.5] V, the following analog output accuracy performances apply.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Thermal analog output Drift				0.25	$%V_{DD}$	
Ratiometric Error		-0.1		0.1	$%V_{DD}$	$4.5V \le V_{DD} \le 5.5V$

Table 28 – High-temperature analog output accuracy

10.2. PWM Output Description

10.2.1. Definition

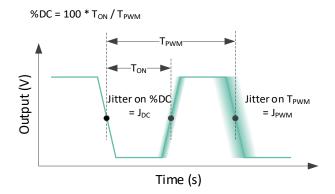


Figure 10 – PWM signal definition

Parameter	Symbol	Test Conditions
PWM period	T_{PWM}	Trigger level = 50% V _{DD}
Rise time, Fall time	t_{rise} , t_{fall}	Between 10% and 90% of V_{DD}
Jitter	J_{DC}	$\pm 3\sigma$ for 1000 successive acquisitions with clamped output
Duty Cycle	%DC	100 * T _{ON} / T _{PWM}

Table 29 – PWM signal definition

10.2.2. PWM performances

Parameter	Symbol	Min	Тур.	Max	Unit	Condition
PWM period	T_{PWM}	0.5		10	ms	Configurable through the T_FRAME parameter
PWM Output Resolution	R_{PWM}		0.024		%DC/LSB12	

REVISION 004 - 30 Jan 2025 Page 24 of 66

Datasheet

Parameter	Symbol	Min	Тур.	Max	Unit	Condition
PWM %DC Jitter	J_{DC}			0.03	%DC	C_{OUT} = 10nF, R_L = 10k Ω Push-pull, 2kHz
PWM Period Jitter	J_{PWM}			500	ns	2kHz
PWM %DC thermal drift			0.02	0.05	%DC	C_{OUT} = 10nF, R_L = 10k Ω Push-pull, 2kHz
Rise/Fall Time PWM	T_{rise_fall}	2.5	5.0	7.5	μs	$C_{OUT} \le 15nF^{(18)(19)}$ Push-pull mode
Rise/Fall Active Slope PWM	S_{rise_fall}	0.5	0.8	1.6	V/μs	$C_{OUT} \le 15nF^{(18)(19)}$ Push-pull or open-drain mode

Table 30 – PWM signal specifications

10.2.3. High-Temperature Extension PWM Performances

When the MLX90425 is exposed to high-temperatures within the range [160, 180] °C and the supply voltage remains in the range [4.5, 5.5] V, the following PWM signal specifications apply.

Parameter	Symbol	Min	Тур	Max	Unit	Condition
PWM %DC thermal drift			0.05	0.1	%DC	$C_{OUT} = 10nF, R_L = 10k\Omega$ Push-pull, 2kHz

Table 31 – High-Temperature PWM Signal Specifications

11. End-User Programmable Items

Parameter	PSF value	Description	Default Value	# bits
		GENERAL CONFIGURATION		
USER_ID[0:5]	98 103	Reserved for end-user to program information for traceability. Not compatible with a used patch area	-	8
WARM_TRIGGER_LONG	93	Add delay for PTC entry level	0	1
MUPET_ADDRESS	97	Address to which the slave device will answer	0	2
		SENSOR FRONT-END		
GAINMIN	2	Minimum Virtual Gain	0	6
GAINMAX	3	Maximum Virtual Gain	48	7
GAINSATURATION	4	Enable gain saturation	0	1

REVISION 004 - 30 Jan 2025 Page 25 of 66

¹⁸ The 10nF output capacitor included in the SMP-3 package needs to be considered in the 15nF limit.

¹⁹ If the total load current at the output is high enough to trigger the current limit protection, then the slopes will be determined by the maximum output current drive of around 15mA (typical value).

Triaxis® Position Sensor IC

Datasheet

Parameter	PSF value	Description	Default Value	# bits
SENSING_MODE	17	0: ΔB_Z , angular rotary 360° stray field robust 1-3: Do not use	0	2
		FILTERING		
FILTER	12	FIR filter bandwidth selection 0: no filter (default) 12 1: FIR11 2: FIR1111 3: Do not use		2
	LIN	NEAR TRANSFER CHARACTERISTIC		
4POINTS	11	Enable 4 points PWL linearization	0	1
CLAMPHIGH	19	High clamping value of angle output data	50%	12
CLAMPLOW	14	Low clamping value of angle output data		12
CW	15	Magnet rotation direction	0	1
DP	10	DSP discontinuity point	0	13
LNRS0	22	4-pts - Slope coefficient before reference point A	-	16
LNRAX LNRBX LNRCX LNRDX	25 35 46 58	4-pts - X Coordinate for reference points A,B,C,D	-	16
LNRAY LNRBY LNRCY LNRDY	30 41 53 63	4-pts - Y Coordinate for reference points A,B,C,D	-	16
LNRAS LNRBS LNRCS LNRDS	32 43 55 65	4-pts - Slope coefficient for reference points A,B,C,D	-	16

REVISION 004 - 30 Jan 2025 Page 26 of 66

Triaxis® Position Sensor IC

Parameter	PSF value	Description	Default Value	# bits
LNRY0 LNRY1 LNRY2 LNRY3 LNRY4 LNRY5 LNRY6 LNRY7 LNRY8 LNRY9 LNRY10 LNRY11 LNRY12 LNRY13 LNRY14 LNRY15 LNRY16	24 26 31 34 37 42 45 48 54 57 60 64 67 70 75 77	17-pts / 16 segments - Y coordinate point [0:16]	10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90%	12
OUTSLOPE_COLD	81	Slope coefficient at cold of the programmable temperature-dependent offset	0	8
OUTSLOPE_HOT	82	Slope coefficient at hot of the programmable temperature-dependent offset	0	8
USEROPTION_SCALING	16	Enable output scaling 2x after linearization	0	1
WORK_RANGE	104	Working Range 17 points	0	4
WORK_RANGE_GAIN	7	Post DSP Gain Stage	16	8
		DIAGNOSTICS		
COLD_SAFE_STARTUP_EN	50	Normal (0) or safe start-up (1) after power- on reset	0	1
DIAG_EN	40	Diagnostics global enable. Do not modify!	1	1
DIAG_FIELDTOOHIGHTHR ES	69	Field strength limit over which a fault is reported	14	4
DIAG_FIELDTOOLOWTHR ES	62	Field strength limit under which a fault is reported	0	4
DIAGDEBOUNCE_STEPDO WN	28	Diagnostic debouncing step-down time used for recovery time setting	1	2
DIAGDEBOUNCE_STEPUP	29	Diagnostic debouncing step-up time used for hold time setting	1	2
DIAGDEBOUNCE_THRESH	39	Diagnostic debouncing threshold	1	3
MEMLOCK	52	Enable NVRAM write protection	0	2

Parameter	PSF value	Description	Default Value	# bits
OUT_DIAG_HIZ_TIME	90	default value. For recovery time of 2 DCT _{DIG} it is		5
PWM_DC_FAULT_BAND	86	recommended to program 0x14 PWM Upper or Lower band for analog fault reporting	0	1
PWM_DC_FAULT_VAL	85	PWM Duty Cycle in case of analog fault	0	3
PWM_DC_FIELDTOOLOW _BAND	72	PWM Upper or Lower band for analog fault reporting in case of Field Strength Too Low	-	1
PWM_DC_FIELDTOOLOW _VAL	73	PWM Duty Cycle in case of Field Strength Too Low	-	3
ROUT_LOW	91	Select output impedance for PTC communication	1	1
DAC_REPORT_MODE_AN A	21	Defines the DAC state in analog-fault report mode Refer to the Safety Manual	2	2
PWM_REPORT_MODE_A NA	89	Defines the PWM state in analog-fault report mode Refer to the Safety Manual		1
		OUTPUT CONFIGURATION		
ABE_AOUT_MODE	92	Output-amplifier mode selection: 0: Analog output (12-bit DAC) 1: Digital output with open-drain NMOS 2: Digital output with open-drain PMOS 3: Digital output with Push-Pull		2
PROTOCOL	94	Selection of the output protocol and its corresponding timing mode: 0: Analog Output (continuous synchronous angle acquisition) 1: PWM Output (continuous asynchronous angle acquisition)	0	1
T_FRAME	84	Output PWM period PWM period = 4us * T_FRAME	250	12
PWM_POL	88	Invert the PWM polarity	0	1
ABE_CURR_LIMITER	105	Enables slow PWM slopes. Do not modify!	0	1

Table 32 – MLX90425 end-user programmable items table

Performances described in this document are only achieved by adequate programming of the device. To ensure desired functionality, Melexis recommends to follow its programming guide and to contact its technical or application service.

12. Description of End-User Programmable Items

12.1. Output modes and protocols

The MLX90425 offers an analog output mode and a digital output mode using the PWM protocol.

12.1.1. Output Modes

The parameter ABE_OUT_MODE defines the output stage mode (outside of fail-safe state) in application.

ABE_OUT_MODE	Description	Comments
0	Analog output (12-bit DAC)	Default
1	Digital output with open-drain NMOS	Requires a pull-up resistor on the output
2	Digital output with open-drain PMOS	Requires a pull-down resistor on the output
3	Digital output with push-pull	

Table 33 – Output mode selection

12.1.2. Protocol

The parameter PROTOCOL defined the measurement timings mode and the corresponding output protocol.

PROTOCOL	Description
0	Continuous synchronous angle acquisition, analog output (DAC)
1	Continuous asynchronous angle acquisition, PWM

Table 34 – Protocol selection

12.1.3. PWM Protocol

If a digital output mode is selected, the output signal is a Pulse Width Modulation (PWM) digital signal. The PWM polarity is selected by the PWM_POL parameter:

- PWM_POL = 0 for a low level at 100%
- PWM_POL = 1 for a high level at 100%

The PWM frequency is selected in the range [100, 2000] Hz by the T_FRAME parameter (12-bit value), defining the period time in the range [0.5, 10] ms. Minimum allowed value for T_FRAME is therefore 125 (0x7D).

$$T_{PWM} = \frac{4}{10^6} \times T_FRAME$$

PWM timings specifications in the scope of the MLX90425 can be found in section 6.5 while PWM signal characteristics such the rise time, fall times, jitter, can be found in section 10.2.

12.2. Output Transfer Characteristic

There are 2 different possibilities to define the transfer function (LNR) as specified in Table 35.

REVISION 004 - 30 Jan 2025 Page 29 of 66

Datasheet

- With 4 arbitrary points (defined by X and Y coordinates) and 5 slopes
- With 17 equidistant points for which only the Y coordinates are defined

Output Transfer Characteristic	4POINTS
4 Arbitrary Points	1
17 Equidistant Points	0

Table 35 – Output transfer characteristic selection table

12.2.1. Clockwise Parameter

The CW parameter defines the magnet rotation direction.

Rotation Direction	cw
Clockwise	1
Counter Clockwise	0

Table 36 – Magnet rotation selection table

Counter clockwise is the defined by

- the 1-4-5-8 pin order direction for the SOIC-8 package
- the 1-2-3 pin order direction for the SMP-3 package
- the 1-2-3-4 pin order direction for the DMP-4 package
- the 1-8-9-16 pin order direction for the TSSOP-16_EP package
- the 1-2-3-4 pin order direction for the SMP-4 package

Clockwise if defined by the reverse pin order. Refer to the package drawings in chapter 16.

12.2.2. Discontinuity Point (or Zero Degree Point)

The Discontinuity Point defines the 0° point on the circle. The discontinuity point places the new origin at any location of the trigonometric circle. The DP is used as reference for all angular measurements.

New Angle = Angle
$$-$$
 DP

The DP parameter is encoded using a signed 13-bit format (two's complement). The new angle and the input angle are expressed in LSB12.

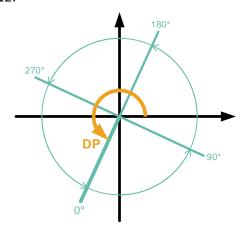


Figure 11 – Discontinuity point positioning (for CW=0)

REVISION 004 - 30 Jan 2025 Page 30 of 66

Datasheet

12.2.3. 4-Pts LNR Parameters

The LNR parameters, together with the clamping values, define the transfer function between the internal digital representation of the angle and the output signal.

The shape of the MLX90425 four points transfer function from the internal angle to the output value is described in the following figure (Figure 12). Seven segments can be programmed using points and slopes. The segments beyond the clamping levels are necessarily flat.

Two to six calibration points are available, reducing the overall non-linearity of the IC by almost an order of magnitude each time. Three or more calibration point will be preferred by customers looking for excellent non-linearity figures. Two-point calibrations will be preferred by customers looking for a cheaper calibration set-up and shorter calibration time.

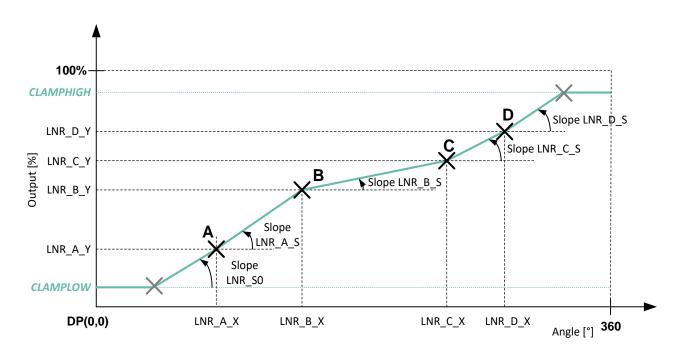


Figure 12 – 4pts linearization parameters description

12.2.4. 17-pts LNR Parameters

The LNR parameters, together with the clamping values, define the transfer function between the internal digital representation of the angle and the output signal.

The shape of the MLX90425 seventeen points transfer function from the internal angle to the output value is described in the Figure 13. In the 17-pts mode, the output transfer characteristic is Piecewise Linear (PWL).

REVISION 004 - 30 Jan 2025 Page 31 of 66

Datasheet

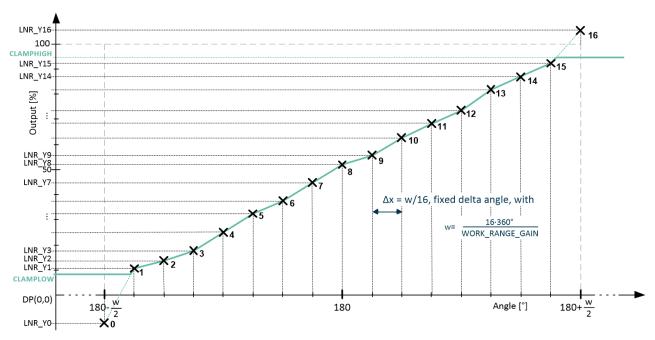


Figure 13 – 17-pts linearization parameters description

All the Y-coordinates can be programmed from -50% up to +150% to allow clamping in the middle of one segment (like on the figure), but the output value is limited to CLAMPLOW and CLAMPHIGH values. Between two consecutive points, the output characteristic is interpolated.

12.2.5. WORK_RANGE Parameter for Angle Range Selection

The parameter WORK_RANGE determines the input range on which the 16 segments are uniformly spread. This parameter is provided for compatibility with former versions of Melexis Triaxis® sensors.

For full featured working range selection, see section 12.2.6. For WORK_RANGE parameter, following table applies.

WORK_RANGE	Range	Δx 17-pts
0	360.0°	22.5°
1	320.0°	20.0°
2	288.0°	18.0°
3	261.8°	16.4°
4	240.0°	15.0°
5	221.5°	13.8°
6	205.7°	12.9°
7	192.0°	12.0°

WORK_RANGE	Range	Δx 17-pts
8	180.0°	11.3°
9	144.0°	9.0°
10	120.0°	7.5°
11	102.9°	6.4°
12	90.0°	5.6°
13	80.0°	5.0°
14	72.0°	4.5°
15	65.5°	4.1°

Table 37 – Work range for 360° periodicity

Outside of the selected range, the output will remain at clamping levels.

REVISION 004 - 30 Jan 2025 Page 32 of 66

12.2.6. WORK_RANGE_GAIN Parameter for Angle Range Selection

Alternatively, the range for the angle can be selected using the WORK_RANGE_GAIN parameter, which applies a fixed gain to the transfer characteristics. WORK_RANGE_GAIN is coded on 8 bits where the 4 MSB defines the integer part and the 4 LSB the fractional part (in power of twos). Therefore, the following equation applies to define the angle range w:

$$w = \frac{16 * 360}{WORK \ RANGE \ GAIN}$$

Both minimal and maximal angles are then defined by:

$$\theta_{min} = \frac{360-w}{2} \; ; \; \theta_{max} = \frac{360+w}{2}$$

where θ_{min} corresponds to the angle yielding 0% output and θ_{max} the angle giving a 100% output.

Using WORK_RANGE_GAIN parameter, the anchor point is kept at 180 and the range is symmetrically set around this value. It creates a zoom-in of the angle around this point.

The following table gives some values as examples.

WORK_RANGE_GAIN	Factor	Range (w)	θmin	θmax	Δx 17-pts
0x10	1	360°	0°	360°	22.5°
0x20	2	180°	90°	270°	11.3°
0x40	4	90°	135°	225°	5.6°
0xFF	15.94	22.6°	168.7°	191.3°	1.41°

Table 38 – Working range defined by WORK RANGE GAIN parameter

Outside of the working range, the output will remain at clamping levels.

12.2.7. Thermal OUTSLOPE Offset Correction

Two parameters, OUTSLOPE_HOT and OUTSLOPE_COLD, are used to add a temperature dependent offset. In the MLX90425, this offset is applied to the angle just before the clamping function.

The offset shift is computed using the device internal linearized temperature as depicted in the figure below (Figure 14).

REVISION 004 - 30 Jan 2025 Page 33 of 66

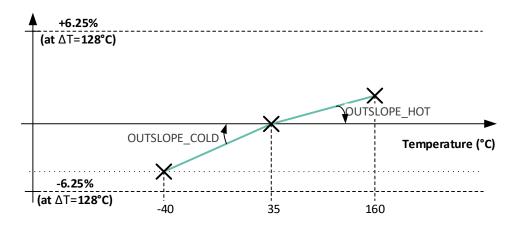


Figure 14 – Temperature compensated offset

The thermal offset can be added or subtracted to the output, before the clamping. The span of this offset is $\pm 6.25\%$ of the full output scale for a temperature difference of 128°C. Two thermal coefficients are defined depending on whether the linearized temperature is below (OUTSLOPE_COLD) or above (OUTSLOPE_HOT) the 35°C anchor point.

If the device internal temperature is higher than 35°C then:

Compensated Angle = Angle
$$-\Delta T \cdot \frac{\text{OUTSLOPE_HOT}}{64}$$

If the device internal temperature is lower than 35°C then:

Compensated Angle = Angle
$$-\Delta T \cdot \frac{\text{OUTSLOPE_COLD}}{64}$$

Each of the two thermal coefficients is encoded using an 8-bit two's complement signed format. The thermally compensated angle and the input angle are expressed in LSB12, while the linearized temperature difference ΔT is expressed in °C.

12.2.8. Clamping Parameters

The clamping levels are two independent values to limit the output voltage range in normal operation. The CLAMPLOW parameter adjusts the minimum output level. The CLAMPHIGH parameter sets the maximum output level. Both parameters have 12 bits of adjustment and are available for all LNR modes. The values are encoded in fractional code, from 0% to 100%

12.3. Sensor Front-End

The SENSING_MODE parameter defines which sensing mode and fields are used to calculate the angle. The different possibilities are described in the tables below. This 2-bit value selects the first (B1) and second (B2) field components according to the Table 40 content.

Parameter	Value
SENSING_MODE	[0:2]
GAINMIN	[0:47]
GAINMAX (20)	[0:48]
GAINSATURATION	[0:1]

Table 39 – Sensing Mode and Front-End Configuration

SENSING_MODE	B1	B2	Motion
0	$\frac{\Delta B_Z}{\Delta X}$	$\frac{\Delta B_Z}{\Delta Y}$	ΔB_Z , angular rotary 360° stray field robust
1, 2, 3	N/A	N/A	Do not use

Table 40 – Sensing mode description

GAINMIN and GAINMAX define the thresholds of the gain monitor diagnostic. Whenever the virtual gain is strictly outside of these limits, the diagnostic reports a fault. When GAINMIN = 0 or GAINMAX > 47, the corresponding fault reporting is disabled.

If GAINSATURATION is set, then the virtual gain is held between GAINMIN and GAINMAX values. The saturation of the gain applies before the diagnostic is checked. Therefore, the gain monitor diagnostic can be considered inactive.

12.4. Filtering

The MLX90425 features 2 low-pass FIR filter modes controlled with FILTER = 1...2. FILTER = 0 corresponds to no filtering. The transfer function is described by:

$$y_n = \frac{1}{\sum_{i=0}^{j} a_i} \sum_{i=0}^{j} a_i x_{n-i}$$

This filter characteristic is given in the Table 41.

FILTER	0	1	2
Туре	Disable	Finite Impulse Response (FIR)	
Coefficients a _i	1	11	1111
Title	No filter	ExtraLight	Light
DSP cycles (j= nb of taps)	1	2	4
Efficiency RMS (dB)	0	3.0	6.0

Table 41 – FIR filter characteristics

REVISION 004 - 30 Jan 2025 Page 35 of 66

²⁰ A value of 48 (0x30) or above disables the diagnostic.

Datasheet

12.5. Programmable Diagnostics Settings

12.5.1. Diagnostics Global Enable

DIAG_EN should be kept to its default value (1) to retain all functional safety abilities of the MLX90425. This feature shall not be disabled.

12.5.2. Diagnostic Debouncer

A debouncing algorithm is available for analog diagnostic reporting. Enabling this debouncer will increase the FHTI of the device. Therefore, Melexis recommends keeping the debouncing of analog faults off by not modifying below described values. The factory default settings mentioned in chapter 11 should be used.

Parameter	Description
DIAGDEBOUNCE_STEPDOWN	Decrement values for debouncer counter. The counter is decremented once per evaluation cycle when no analog fault is detected.
DIAGDEBOUNCE_STEPUP	Increment value for debouncer counter. The counter is incremented once per evaluation cycle when an analog fault is detected.
DIAGDEBOUNCE_THRESH	Threshold for debouncer counter to enter diagnostic mode. When set to 0, debouncing is off and analog faults are reported immediately after detection.

Table 42 – Diagnostic debouncing parameters

Once an analog monitor detects an error, it takes control of the debouncing counter. This counter will be incremented by DIAGDEBOUNCE_STEPUP value each time this specific monitor is evaluated and the error is still present. When the debouncing counter reaches the value defined by DIAGDEBOUNCE_THRESH, an error is reported on the error channel, and the debouncing counter stays clamped to this DEBOUNCE_THRESH value (see section 12.5.6 for PWM error reporting). Once the error disappears, each time its monitor is evaluated, the debouncing counter is decremented by DIAGDEBOUNCE_STEPDOWN value. When the debouncing counter reaches zero, the error disappears from the reporting channel and the debouncing counter is released. To implement proper reporting times, one should refer to the FHTI, see chapter 13.3. The reporting and recovery time are defined in the table below (valid for DIAGDEBOUNCE_THRESH > 0).

Parameter	Min	Max
Reporting Time	$DCT \cdot \left(\left\lceil \frac{THRESH}{STEPUP} \right\rceil - 1 \right)$	$DCT \cdot \left(\left\lceil \frac{THRESH}{STEPUP} \right\rceil \right)$
Recovery Time	$DCT \cdot \left(\left\lceil \frac{THRESH}{STEPDOWN} \right\rceil \right)$	$DCT \cdot \left(\left\lceil \frac{THRESH}{STEPDOWN} \right\rceil + 1 \right)$
	$\left\lceil \frac{x}{y} \right\rceil$	is the ceiling function of x divided by y

Table 43 – Diagnostic reporting and recovery times

REVISION 004 - 30 Jan 2025 Page 36 of 66

12.5.3. Over/Under Temperature Diagnostic

DIAG_TEMP_THR_HIGH defines the threshold for over temperature detection and is compared to the linearized value of the temperature sensor T_{LIN} . DIAG_TEMP_THR_LOW defines the threshold for under temperature detection and is compared to the linearized value of the temperature sensor T_{LIN} .

One can get the physical temperature TPHY of the die from TLIN using following formula

$$T_{PHY}[^{\circ}C] = \frac{T_{LIN}}{8} - 73.15$$

Unlike T_{LIN} , DIAG_TEMP_THR_LOW and DIAG_TEMP_THR_HIGH are encoded using 8-bit unsigned values. Therefore, a factor of 16 must be considered when comparing either threshold to T_{LIN} .

$$DIAG_TEMP_THR_(LOW/HIGH) = \frac{T_{LIN}}{16}$$

The following table summarizes the characteristics of the linearized temperature sensor and the encoding of the temperature monitor thresholds.

Parameter	Symbol	Min	Тур.	Max	Unit	Condition
T _{LIN} resolution	Res_{TLIN}	-	0.125	-	°C	12-bit range
T _{LIN} refresh rate	F _{S,TLIN}	-	200	-	Hz	
T _{LIN} linearity error	T_{LinErr}	-8	-	8	°C	from -40 to 160°C
T _{LIN} linearity error	T_{LinErr}	-2	-	6	°C	from 35 to 125°C
Low temperature threshold	DIAG_TEMP _THR_LOW	-	8	-	LSB8	Fixed value, corresponds to -57°C
High temperature threshold	DIAG_TEMP _THR_HIGH	-	136	-	LSB8	Fixed value, corresponds to 199°C
High/low temperature threshold resolution	Res _{Tthr}	-	2	-	°C	8-bit range

Table 44 – Linearized temperature sensor characteristics

12.5.4. High-Temperature Extension Over-Temperature Diagnostic

When operating at a junction temperature up to 175°C, the MLX90425 retains all its diagnostic features. There's no risk of false-positive. Above this temperature, the overheating monitor enters its detection range. The default configuration of this monitor reports a typical junction temperature of 199°C. Due to temperature sensor tolerances and noise at high temperatures, Melexis recommends to increase the safety margin above 15°C. Consequently, if the sensor operates up to 190°C of junction temperature, Melexis cannot guarantee that the overheating monitor will not report an error and recommends to adapt the overheating monitor threshold to 207°C. This can be done by reprogramming a custom device configuration (patch) shown in Table 14 below. Contact a Melexis representative for further information.

Parameter	Patch Content
PATCH2_ADDRESS	0x396A
PATCH2_I	0x008C

Table 45 – High-temperature extension patch to prevent false-positive on overheating monitor

REVISION 004 - 30 Jan 2025 Page 37 of 66

12.5.5. Field Strength and Field Monitoring Diagnostics

Field Strength is compensated over the operating temperature range and represents a reliable image of the differential field intensity generated by the magnet. The lower and upper limits for this diagnostic are set with the parameters described in the following table. Both parameters are encoded on four bits. They start at the respective "min" value and increase by "step" with each additional LSB.

Parameter	Min	Max	Step	Unit
DIAG_FIELDTOOLOWTHRES	0	15	1	mT/mm
DIAG_FIELDTOOHIGHTHRES (21)	100	310	15	mT/mm

Table 46 – Field Monitor Diagnostic limits

12.5.6. Analog Mode Diagnostic Reporting

When in analog mode, a digital fault is reported by configuring the OUT pin in high-impedance. Conversely, an analog fault is reported by pulling the OUT pin to the V_{satD_lopp} low level (refer to Table 13).

This behavior is only valid for the factory default settings. Other reporting behaviors and further information on the safe-states are available in the safety manual of the MLX90425.

12.5.7. PWM Mode Diagnostic Reporting

When in PWM mode, a digital fault is reported by configuring the OUT pin in high-impedance.

When reporting an analog fault, the parameter PWM_DC_FAULT_BAND and PWM_DC_FAULT_VAL can be used to specify the 12-bit output level. The parameter PWM_DC_FAULT_BAND is used to define the BAND within which the output level is set.

PWM_DC_FAULT_BAND	Description
0	The Low band [0:CLAMPLOW] is selected
1	The High band [CLAMPHIGH:4095] is selected

Table 47 – Output level band selection in case of an analog fault

The parameter PWM_DC_FAULT_VAL selects a value in the specified band

$$Low \ band \ output \ level = PWM_DC_FAULT_VAL \cdot \left(\frac{CLAMPLOW}{8}\right)$$

$$High \ band \ output \ level = 4095 - PWM_DC_FAULT_VAL \cdot \left(\frac{4095 - CLAMPHIGH}{8}\right)$$

Correspondingly, the parameters PWM_DC_FIELDTOOLOW_BAND and PWM_DC_FIELDTOOLOW_VAL can be used to specify the 12-bit output level in case of a field strength too low event.

This reporting behavior is only valid for the factory default settings, with the exception of the aforementioned parameters in this section. Other reporting behaviors and further information on the safestates are available in the safety manual of the MLX90425.

REVISION 004 - 30 Jan 2025 Page 38 of 66

²¹ When this parameter is setthe maximum value of 15 (0xF), the FIELD_TOO_HIGH diagnostic is disabled (see Table 19).

Datasheet

13. Functional Safety

13.1. Safety Manual

The safety manual, available upon request, contains the necessary information to integrate the MLX90425 component in a safety related item, as a Safety Element Out-of-Context (SEooC).

In particular, it includes:

- The description of the Product Development lifecycle tailored for the Safety Element.
- An extract of the Technical Safety concept.
- The description of Assumptions-of-Use (AoU) of the element with respect to its intended use, including:
 - assumptions on the device safe state;
 - assumptions on fault tolerant time interval and multiple-point faults detection interval;
 - assumptions on the context, including its external interfaces;
- The description of safety analysis results (at the device level, to be used for the system integration), HW architectural metrics and description of dependent failures initiators.
- The description and the result of the functional safety assessment process; list of confirmation measures and description of the independency level.

13.2. Safety Mechanisms

The MLX90425 provides numerous self-diagnostic features (safety mechanisms). Those features increase the robustness of the IC functionality either by preventing the IC from providing an erroneous output signal or by reporting the failure.

Legend

High coverage

O Medium coverage

ANA: Analog hardware failure reporting mode, described in the safety manual

High-Z: A special failure reporting mode where the output is set in high-impedance mode (no HW fail-safe mode/timeout, no SW safe start-up)

DIG: Digital hardware failure reporting mode, described in the safety manual

At Start-up: A HW fault present at time zero is detected before the first frame is transmitted.

DIAG_EN: This safety mechanism can be disabled by setting DIAG_EN = 0 (see chapter 12.5.1). This option should not be used in application mode!

Table 48 – Self diagnostic legend

REVISION 004 - 30 Jan 2025 Page 39 of 66

Triaxis® Position Sensor IC

Category and safety mechanism name	Front- end	ADC	DSP	Back- end	Support. Func.	Module & Package	Reporting mode	At start- up	DIAG EN
Signal-conditioning Diagnostic	•	•	0			•			
Magnetic Signal Conditioning Voltage Test Pattern	•	0	0				ANA	NO	•
Magnetic Signal Conditioning Rough Offset Clipping check	•		0				ANA	NO	•
Magnetic Signal Conditioning Gain Monitor & Clamping	•		0			•	ANA	YES	•
Mag. Sig. Cond. Failure Control by the Chopping Technique	•						n/a	n/a	
A/D Converter Test Pattern		•					ANA	NO	•
ADC Conversion errors & Overflow Errors		•					ANA	YES	•
ADC Common Mode Monitor		•					n/a	YES	
Flux Monitor (Rotary mode)	•	0				•	ANA	NO	•

Triaxis® Position Sensor IC

Category and safety mechanism name	Front- end	ADC	DSP	Back- end	Support. Func.	Module & Package	Reporting mode	At start- up	DIAG EN
Digital-circuit Diagnostic		•	•		0				
RAM Parity, 1-bit per 16-bit word, ISO D.2.5.2			•				DIG	YES	
ROM Parity, 1-bit per 32-bit word, ISO D.2.5.2			•				DIG	YES	
NVRAM 16-bit signature (run-time) ISO D.2.4.3, by means of SW CRC-CCITT16			•				DIG	NO	
NVRAM Double Error Detection ECC ISO D.2.4.1			•				DIG	YES	
Logical Monitoring of Program Sequence ISO D.2.9.3 via Watchdog "IWD" (CPU clock) ISO D.2.9.2			•		0		DIG	NO	•
Watchdog "AWD" (separate clock) ISO D2.9.1			•		0		DIG	YES	
CPU Errors "Invalid Address", "Wrong opcode"			•		0		DIG	YES	
ADC Interface Checksum		•					DIG	NO	•
ADC Internal Errors		0					DIG	YES	
DSP Test Pattern (atan2)			•		0		DIG	NO	•
Critical Ports Monitoring			•				DIG	NO	•
ADC Data Adder Test - Range Check and Buffer alignment		0					DIG	YES	•
ADC Data Adder Error		0					DIG	YES	
DSP Overflow	0	0	•				ANA	NO	•

Datasheet

Category and safety mechanism name	Front- end	ADC	DSP	Back- end	Support. Func.	Module & Package	Reporting mode	At start- up	DIAG EN
System-level Diagnostic					•	•			
Supply Voltage Monitors (all supply domains except VDD_OV & POR)					•	•	ANA	YES	•
External Supply Over-voltage Monitor					•	•	High-Z	YES	
Digital Supply Under-voltage Monitor (Power-on Reset)					•	•	High-Z	YES	
Overheating Monitor	0	0	0	0	0	•	ANA	YES	•
Warning/Reporting Mechanisms									
HW Error Controller			•	•	•		DIG	n/a	
HW Fail-safe mode with timeout			•	•	•		High-Z	n/a	
Analog-type Error management	•	•			•		ANA	n/a	
Safe start-up mode			•		•		DIG	n/a	
Mechanisms executed at start-up only									
RAM March-C HW Test at start-up			•		•		DIG	YES	

Table 49 – MLX90425 list of self-diagnostics with characteristics

Triaxis® Position Sensor IC

Datasheet

13.3. Fault Handling Time Interval

The Fault handling Time Interval (FHTI) is defined as the time interval between the occurrence of a fault causing a malfunction in the MLX90425 and the end of the last frame preceding the transition into the defined fail-safe state.

The following table provides the worst-case FHTI for both an analog fault and a digital fault in MLX90425.

Case	FHTI	Comment
		Refer to section 6.1 for the DCT _{ANA} value
Analog Fault	nalog Fault DCT _{ANA} + 2 T _{frame} In analog mode, T _{frame} = 0ms	
		In PWM mode, $T_{frame} = T_{PWM}$ (see sections 10.2.2 and 0)
Digital Fault	DCT_{DIG}	Refer to section 6.1 for the DCT _{DIG} value

Table 50 – Worst-case FHTI

The FHTI values provided here are valid only for the default factory settings.

REVISION 004 - 30 Jan 2025 Page 43 of 66

14. Recommended Application Diagrams

14.1. Wiring with the MLX90425 in SOIC-8 Package

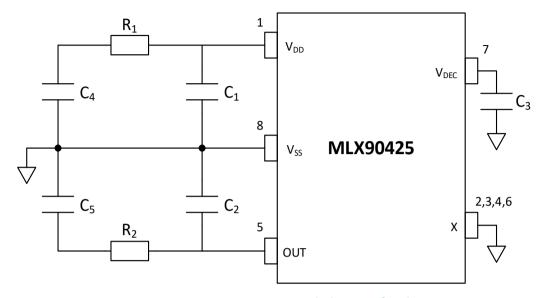


Figure 15 – Recommended wiring for the MLX90425 in SOIC-8 package

Component	Min	Тур.	Max	Remark
C ₁	100nF	220 nF	-	
$C_2(C_L)$	10 nF	10 nF	100 nF	Analog output ²²
C ₂ (C _L)	4.7 nF	10 nF	22 nF	PWM output
C ₃	100nF	100 nF	220 nF	
C_4	-	-	1 nF	
C ₅	-	-	1 nF	Optional, for improved
R_1	-	-	10 Ω	EMC robustness
R_2	-	-	-	

Table 51 – Recommended values for the MLX90425 in SOIC-8 Package

For best EMC performance, C_1 , C_2 and C_3 with typical values need to be placed as close as possible to the IC. To further improve EMC robustness, a 1nF capacitor can be placed close to the connector (C_4 , C_5) and a 10 Ω resistor added in series with the supply line (R_1).

REVISION 004 - 30 Jan 2025

²² Use 100nF for stringent EMC requirements

14.2. Wiring with the MLX90425 in SMP-3 Package (built-in capacitors)

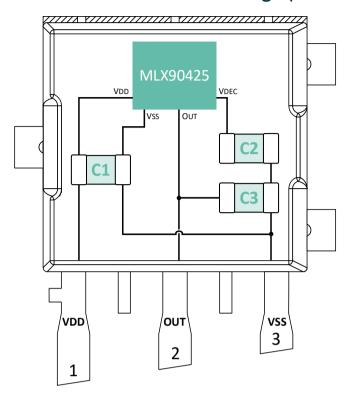


Figure 16 – Internal wiring of the MLX90425 in SMP-3

Component	Value	Remark
C1	220nF	Supply capacitor
C2	100nF	Decoupling capacitor
C3	10nF	Output capacitor

Table 52 – SMP-3 capacitors configuration

REVISION 004 - 30 Jan 2025 Page 45 of 66

14.3. Wiring with the MLX90425 in DMP-4 Package (built-in capacitors)

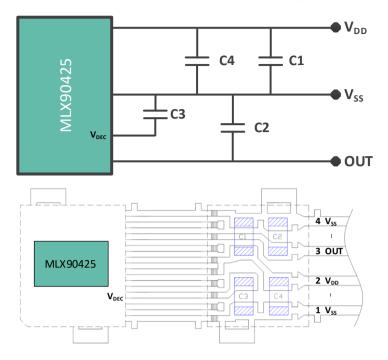


Figure 17 – Recommended wiring for the MLX90425 in DMP-4 package

Component	Value	Remark		
C1	220 nF	Supply capacitor		
C2	10 nF	Output capacitor		
C3	100 nF	Decoupling capacitor		
C4	-	Not mounted		

Table 53 – Recommended values for the MLX90425 in DMP-4 Package

REVISION 004 - 30 Jan 2025 Page 46 of 66

14.4. Wiring with the MLX90425 in TSSOP-16_EP Package

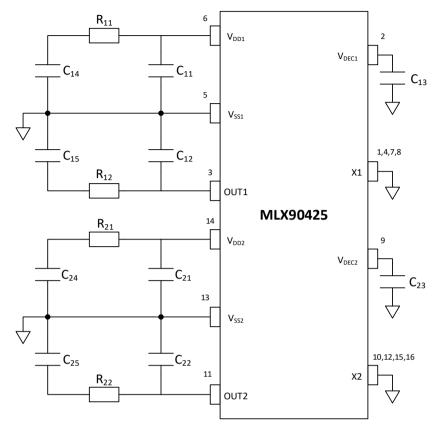


Figure 18 – Recommended wiring for the MLX90425 in TSSOP-16_EP package (stacked-dice)

Component	Min	Тур.	Max	Remark			
C_{x1}	100nF	220 nF	-				
C (C)	10nF	10nF	100nF	Analog ²³	ABE_AOUT_MODE=0		
$C_{x2}(C_L)$	4.7nF	10nF	22nF	PWM	ABE_AOUT_MODE=1,2,3		
C_{x3}	100 nF	100 nF	220 nF				
C _{x4}	-	-	1 nF				
C_{x5}	-	-	1 nF	Optional, for improved EMC robustness			
R _{x1}	-	-	10 Ω	LIVIC TODUSTITESS			
R_{x2}	-	-	-				

Table 54 – Recommended values for the MLX90425 in TSSOP-16_EP Package

For best EMC performance, C_{x1} , C_{x2} and C_{x3} with typical values need to be placed as close as possible to the IC. To further improve EMC robustness, a 1nF capacitor can be placed close to the connector (C_{x4} , C_{x5}) and a 10 Ohm resistor added in series with the supply line (R_{x1}).

REVISION 004 - 30 Jan 2025 Page 47 of 66

²³ Use 100nF for stringent EMC requirements

Datasheet

14.5. Wiring with the MLX90425 in SMP-4 Package (built-in capacitors)

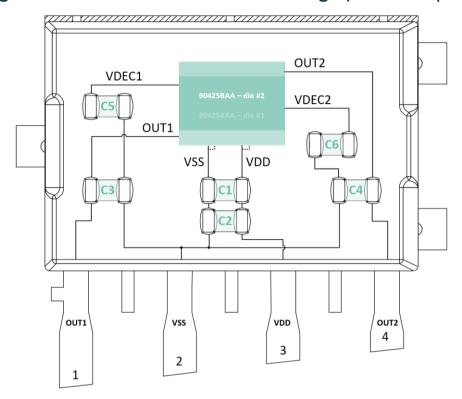


Figure 19 – Internal wiring of the MLX90425 in SMP-4

Component	Value	Remark		
C1	220nF	Supply capacitor		
C2	220111			
C3	10nF	Output capacitor		
C4	10111	Output capacitor		
C5	100nF	Decoupling capacitor		
C6	100111	Decoupling capacitor		

Table 55 – SMP-4 capacitors configuration

REVISION 004 - 30 Jan 2025 Page 48 of 66

Datasheet

15. IC handling and assembly

15.1. Storage and handling of plastic encapsulated ICs

Plastic encapsulated ICs shall be stored and handled according to their MSL categorization level (specified in the packing label) as per J-STD-033.

Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). The component assembly shall be handled in EPA (Electrostatic Protected Area) as per ANSI S20.20

For more information refer to Melexis Guidelines for storage and handling of plastic encapsulated ICs (24)

15.2. Assembly of encapsulated ICs

For Surface Mounted Devices (SMD, as defined according to JEDEC norms), the only applicable soldering method is reflow.

For Through Hole Devices (THD), the applicable soldering methods are reflow, wave, selective wave and robot point-to-point. THD lead pre-forming (cutting and/or bending) is applicable under strict compliance with Melexis *Guidelines for lead forming of SIP Hall Sensors* ⁽²⁴⁾.

Melexis products soldering on PCB should be conducted according to the requirements of IPC/JEDEC and J-STD-001. Solder quality acceptance should follow the requirements of IPC-A-610.

For PCB-less assembly refer to the relevant application notes (24) or contact Melexis.

Electrical resistance welding or laser welding can be applied to Melexis products in THD and specific PCB-less packages following the *Guidelines for welding of PCB-less devices*⁽²⁴⁾.

Environmental protection of customer assembly with Melexis products for harsh media application, is applicable by means of coating, potting or overmolding considering restrictions listed in the relevant application notes (24)

For other specific process, contact Melexis via www.melexis.com/technical-inquiry

REVISION 004 - 30 Jan 2025 Page 49 of 66

²⁴ www.melexis.com/ic-handling-and-assembly

Triaxis® Position Sensor IC

Datasheet

15.3. Soldering recommendations for the Exposed Pad (EP) in TSSOP-16

The MLX90425 in a TSSOP-16 stacked dice configuration comes with an exposed pad. This package is necessary to enable sufficient space for the die stacking. The exposed pad is **not** used to improve the thermal dissipation of the IC. Consequently, the ICs are isolated with regards to the exposed pad, both electrically and thermally. To guarantee product performance and electrical safety, the following guidelines shall be followed when designing the PCB.

A copper pad of adequate size shall be placed under the exposed pad on the PCB. For electrical safety and optimal EMC and noise performance, the copper pad on the PCB shall remain electrically inactive (not connected to any electrical net) and covered by solder mask. It is recommended not to solder the package exposed pad to the PCB.

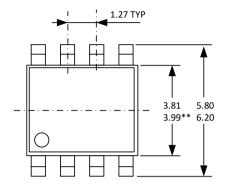
When the exposed pad is soldered, the following remarks shall be taken into consideration:

- a stencil of minimal thickness of 150um shall be used
- when possible, dispensing shall be limited to two dots of 1mm diameter

a limited force of 1N to 2 N should be applied to the TSSOP package to secure wetting contact of the exposed pad to solder paste

15.4. Environment and sustainability

Melexis is contributing to global environmental conservation by promoting non-hazardous solutions. For more information on our environmental policy and declarations (RoHS, REACH...) visit www.melexis.com/environmental-forms-and-declarations


REVISION 004 - 30 Jan 2025 Page 50 of 66

Datasheet

16. Package Information

16.1. SOIC-8 - Package Information

16.1.1. SOIC-8 - Package Dimensions

NOTES:

All dimensions are in millimeters (angles in degrees).

- st Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side).
- ** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side).
 *** Dimension does not include dambar protrusion.
- *** Dimension does not include dambar protrusion.

 Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at maximum material condition.

 Dambar cannot be located on the lower radius of the foot.

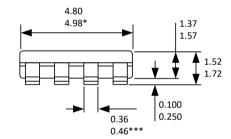


Figure 20 – SOIC-8 package outline drawing

16.1.2. SOIC-8 - Pinout and Marking

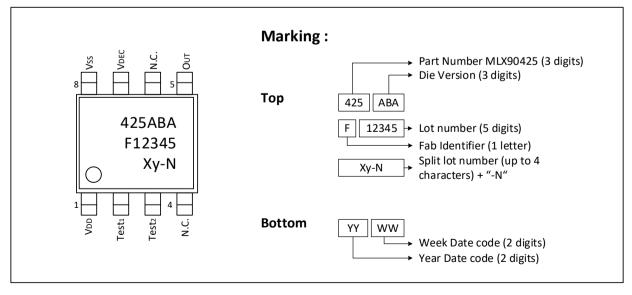


Figure 21 – SOIC-8 pinout and marking

REVISION 004 - 30 Jan 2025 Page 51 of 66

Datasheet

16.1.3. SOIC-8 — Sensitive Spot Positioning

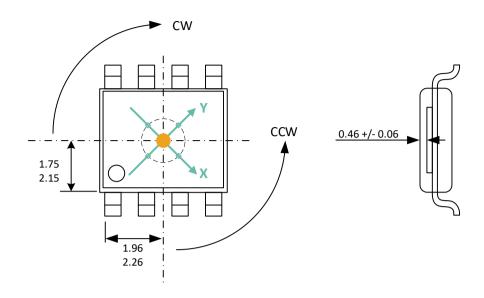
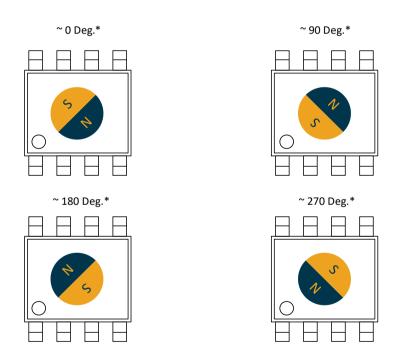
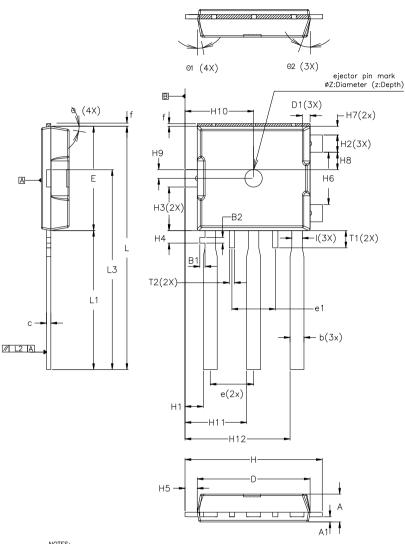



Figure 22 – SOIC-8 sensitive spot position

16.1.4. SOIC-8 - Angle Detection

 $[\]ensuremath{^{*}}$ No absolute reference for the angular information.

Figure 23 – SOIC-8 angle detection


The MLX90425 is an absolute angular position sensor, but the linearity error (see section 8) does not include the error linked to the absolute reference 0 Deg. This reference can be fixed in the application through the discontinuity point.

REVISION 004 - 30 Jan 2025 Page 52 of 66

Datasheet

16.2. SMP-3 – Package Information

16.2.1. SMP-3 - Package Outline Dimension (POD)

Dimension	MIN.	NOM.	MAX.	Dimension	MIN.	NOM.	MAX.
Α	1.550	1.600	1.650	L	13.870	14.000	14.130
A1	0.250	0.290	0.330	L1	7.870	8.000	8.130
B1	0.235	0.300	0.365	L2	-0.250	0.000	0.250
B2		0.33 REF		L3	11.375	11.525	11.675
С	0.250	0.280	0.310	1	0.525	0.600	0.675
D	6.420	6.500	6.580	b	0.770	0.820	0.870
D1		0.450 REF		e1	2.500 BSC		
E	5.920	6.000	6.080	е	2.500 BSC		
f	0.000		0.150	Θ	8°	10°	12°
Н	7.800	7.900	8.000	Θ1	8°	10°	12°
H1	0.900	1.050	1.200	Θ2	18°	20°	22°
H2	0.975	1.050	1.125	øΖ	0.900	1.000	1.100
Н3	2.380	2.475	2.570	z	0.025		0.150
H4	0.635	0.730	0.825	T1	0.870	1.000	1.130
H5	0.605	0.700	0.795	T2	0.225	0.300	0.375
H6	2.875	2.950	3.025				
H7		0.475 REF					
H8	0.875	0.950	1.025				
H9	0.410	0.525	0.640				
H10	3.835	3.950	4.065				
H11	3.400	3.550	3.700				
H12	5.900	6.050	6.200				

ACKAGE WIDTH DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15MM PER END. PACKAGE LENGTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25MM PER SIDE.

THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM. PACKAGE WIDTH AND LENGTH ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH.

- 4. PLATING SPECS: MATTED TIN, ELECTROPLATED, 12 \pm 5 MICROMETER (μ m) THICKNESS
- 5. ALL "EARS" ARE CONNECTED TO ELECTRIC GROUND.

Figure 24 – SMP-3 package outline drawing

REVISION 004 - 30 Jan 2025 Page 53 of 66

^{1.} DIMENSIONS ARE IN MILLIMETER UNLESS NOTED OTHERWISE.

Datasheet

16.2.2. **SMP-3 – Marking**

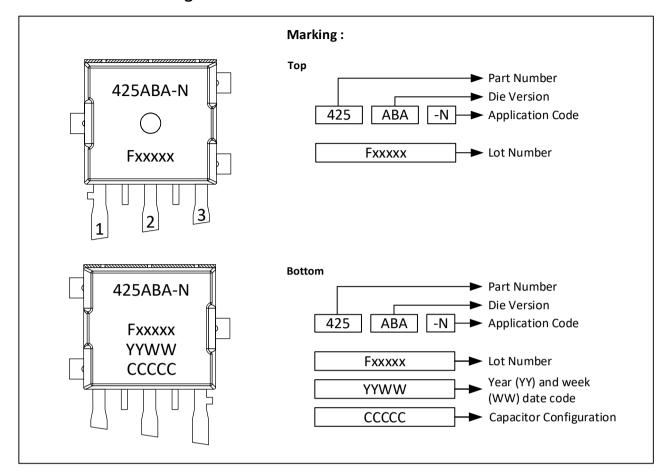


Figure 25 – SMP-3 marking

16.2.3. SMP-3 – Sensitive Spot Positioning

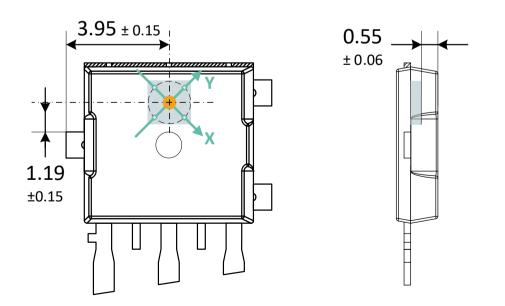
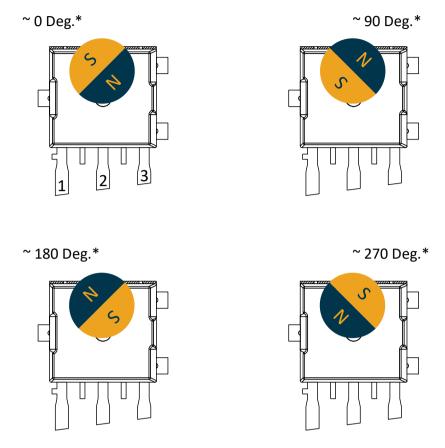



Figure 26 – SMP-3 sensitive spot position

REVISION 004 - 30 Jan 2025 Page 54 of 66

Datasheet

16.2.4. SMP-3 – Angle Detection

* Not an absolute reference for the angular information

Figure 27 – SMP-3 angle detection

The MLX90425 is an absolute angular position sensor, but the linearity error (see section 8) does not include the error linked to the absolute reference 0 Deg. This reference can be fixed in the application through the discontinuity point.

Datasheet

16.3. DMP-4- Package Information

16.3.1. DMP-4- Package Outline Dimensions (POD)- Straight Leads

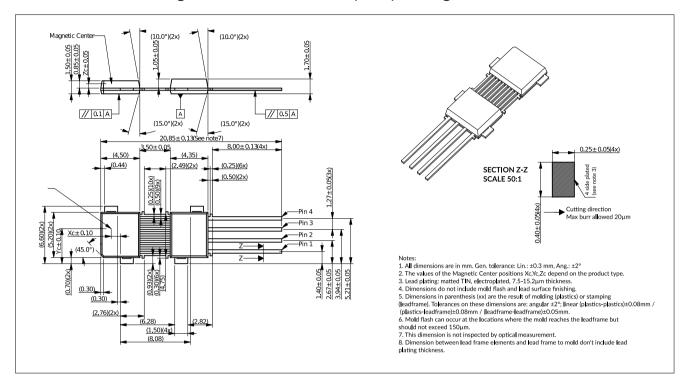


Figure 28 – DMP-4 straight leads package outline drawing

16.3.2. DMP-4- Package Outline Dimensions (POD)- STD2 2.54

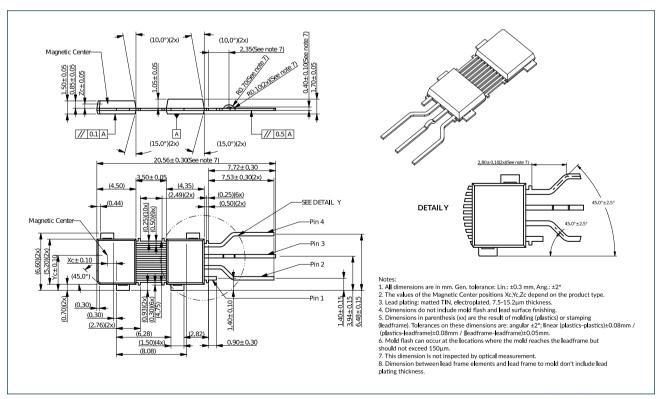


Figure 29 - DMP-4 - Package Outline Dimensions (POD) - STD2 2.54

REVISION 004 - 30 Jan 2025 Page 56 of 66

Datasheet

16.3.3. DMP-4- Package Outline Dimensions (POD) - STD4 2.54

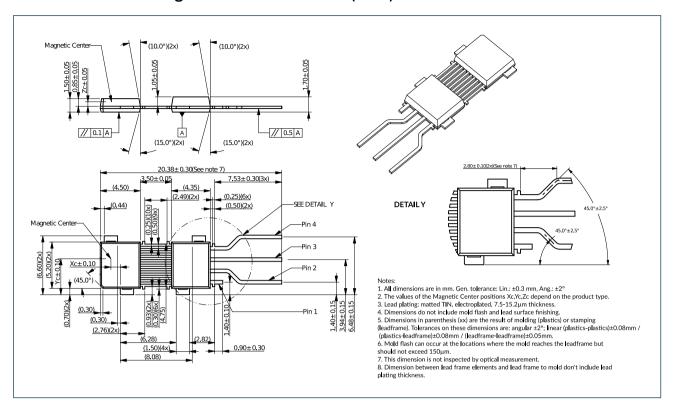


Figure 30 - DMP-4 - Package Outline Dimensions (POD) - STD4 2.54

16.3.4. DMP-4 - Marking

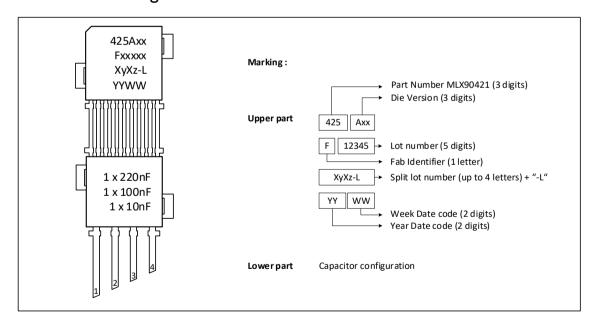


Figure 31 - DMP-4 marking

REVISION 004 - 30 Jan 2025 Page 57 of 66

Datasheet

16.3.5. DMP-4- Sensitive Spot Positioning

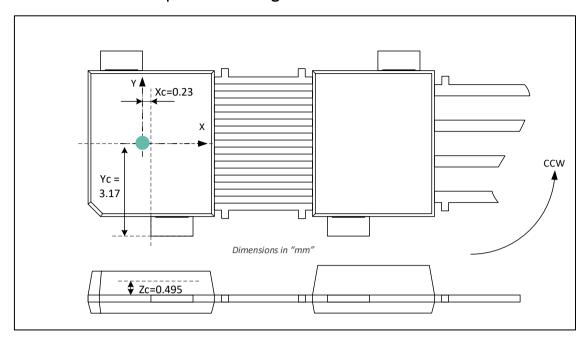


Figure 32 - DMP-4 sensitive spot position

16.3.6. DMP-4- Angle Detection

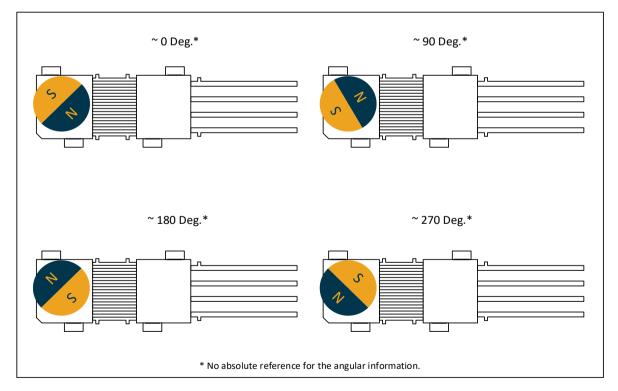
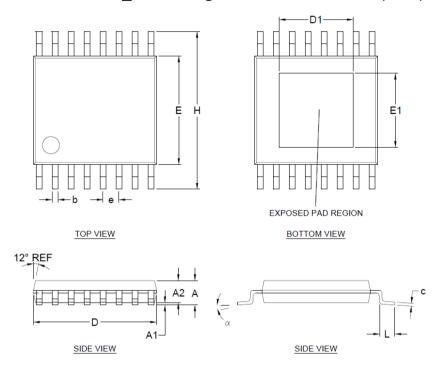


Figure 33 - DMP-4 angle detection


The MLX90425 is an absolute angular position sensor, but the linearity error (see section 8) does not include the error linked to the absolute reference 0 Deg. This reference can be fixed in the application through the discontinuity point.

REVISION 004 - 30 Jan 2025 Page 58 of 66

Datasheet

16.4. TSSOP-16_EP Package Information

16.4.1. TSSOP-16_EP- Package Outline Dimensions (POD)

ഗ≻⊻mo_ı	MINIMUM	MAXIMUM			
Α		1.10			
A1	0.05	0.15			
A2	0.85	0.95			
D	4.90	5.10			
E	4.30	4.50			
D1	2.90	3.10			
E1	2.90	3.10			
Н	6.40 REF				
L	0.50	0.75			
b	0.19	0.30			
С	0.09	0.20			
е	0.65 BSC				
α	0°	8*			

NOTE:

- 1. ALL DIMENSIONS IN MILLIMETERS (mm) UNLESS OTHERWISE STATED.
- 2. DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS OF MAX 0.15 mm PER SIDE.
- 3. DIMENSION E DOES NOT INCLUDE INTERLEADS FLASH OR PROTRUSIONS OF MAX 0.25 mm PER SIDE.
- 4. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION OF MAX 0.08 mm.
- 5. LEAD COPLANARITY SHALL BE MAXIMUM 0.1 mm.

Figure 34 – TSSOP-16_EP Package Outline Dimensions

16.4.2. TSSOP-16 EP- Pinout and Marking

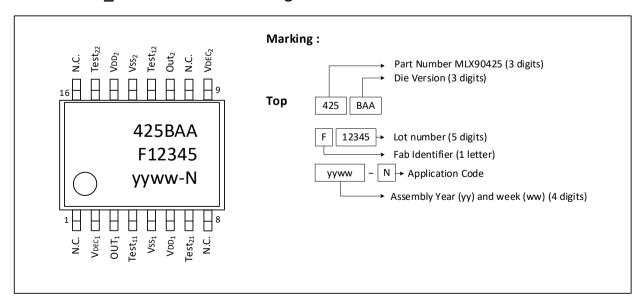


Figure 35 – TSSOP-16_EP Pinout and Marking

REVISION 004 - 30 Jan 2025 Page 59 of 66

Datasheet

16.4.3. TSSOP-16_EP- Sensitive spot positioning

16.4.3.1. Rotary Stray-field Immune

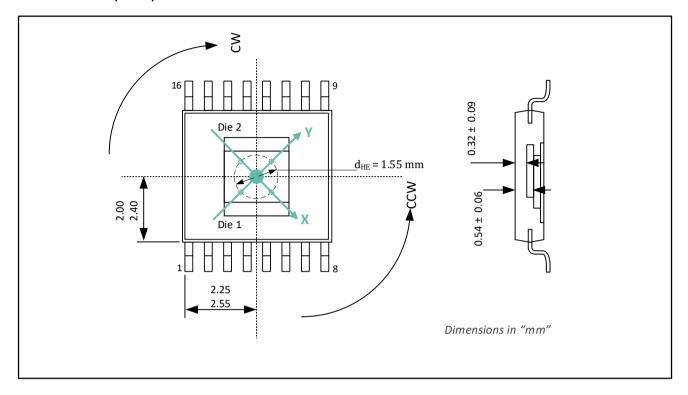


Figure 36 – TSSOP-16_EP sensitive spot for rotary Stray-Field immune mode

REVISION 004 - 30 Jan 2025 Page 60 of 66

Datasheet

16.4.4. TSSOP-16_EP- Angle detection

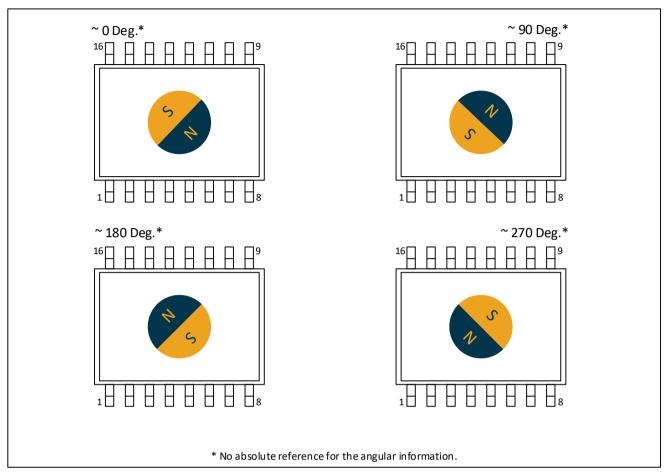
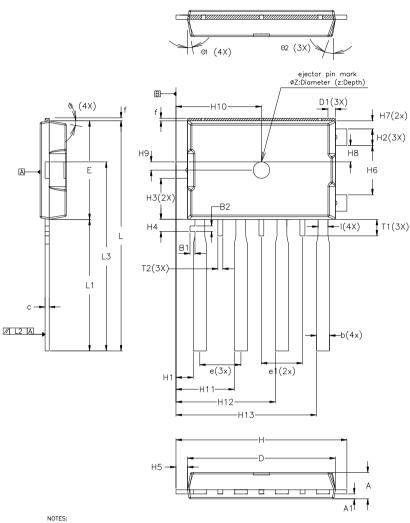


Figure 37 – TSSOP-16 EP Angle Detection


The MLX90425 is an absolute angular position sensor but the linearity error (See section 8) does not include the error linked to the absolute reference 0 Deg. (which can be fixed in the application through the discontinuity point).

REVISION 004 - 30 Jan 2025 Page 61 of 66

Datasheet

16.5. SMP-4 Package Information

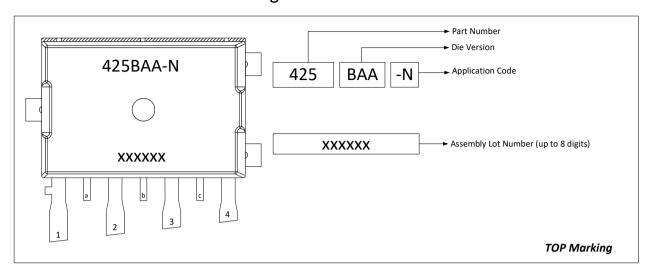
16.5.1. SMP-4- Package Outline Dimensions (POD)

Dimension	MIN.	NOM.	MAX.	Dimension	MIN.	NOM.	MAX.
Α	1.550	1.600	1.650	L	13.870	14.000	14.130
A1	0.250	0.290	0.330	L1	7.870	8.000	8.130
B1	0.235	0.300	0.365	L2	-0.250	0.000	0.250
B2	0.33 REF		L3	11.375	11.525	11.675	
O	0.250	0.280	0.310	ı	0.525	0.600	0.675
D	8.920	9.000	9.080	b	0.770	0.820	0.870
D1		0.450 REF	=	e1	2.500 BSC)
Е	5.920	6.000	6.080	е	2.500 BSC)
f	0.000		0.150	Θ	8°	10°	12°
Н	10.300	10.400	10.500	Θ1	8°	10°	12°
H1	0.900	1.050	1.200	Θ2	18°	20°	22°
H2	0.975	1.050	1.125	øΖ	0.900	1.000	1.100
НЗ	2.380	2.475	2.570	z	0.025		0.150
H4	0.635	0.730	0.825	T1	0.870	1.000	1.130
H5	0.605	0.700	0.795	T2	0.225	0.300	0.375
H6	2.875	2.950	3.025				
H7		0.475 REF	=				
H8	0.875	0.950	1.025				
H9	0.410	0.525	0.640				
H10	5.085	5.200	5.315				
H11	3.400	3.550	3.700				
H12	5.900	6.050	6.200				
H13	8.400	8.550	8.700				

A PACKAGE WIDTH DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15MM PER END. PACKAGE LENGTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25MM PER SIDE.

⚠ THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM. PACKAGE WIDTH AND LENGTH ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH.

- 4. PLATING SPECS: MATTED TIN, ELECTROPLATED, 12 \pm 5 MICROMETER (μm) THICKNESS
- 5. ALL "EARS" ARE CONNECTED TO ELECTRIC GROUND.


Figure 38 – SMP-4 Package Outline Dimensions

REVISION 004 - 30 Jan 2025 Page 62 of 66

^{1.} DIMENSIONS ARE IN MILLIMETER UNLESS NOTED OTHERWISE.

16.5.2. SMP-4- Pinout and Marking

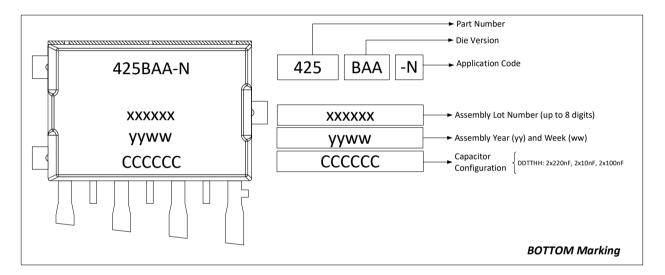


Figure 39 – SMP-4 Pinout and Marking

16.5.3. SMP-4- Sensitive spot positioning

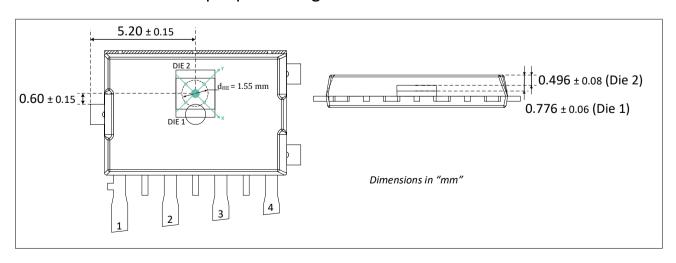


Figure 40 – SMP-4 sensitive spot for rotary Stray-Field immune mode

REVISION 004 - 30 Jan 2025 Page 63 of 66

16.5.4. SMP-4- Angle detection

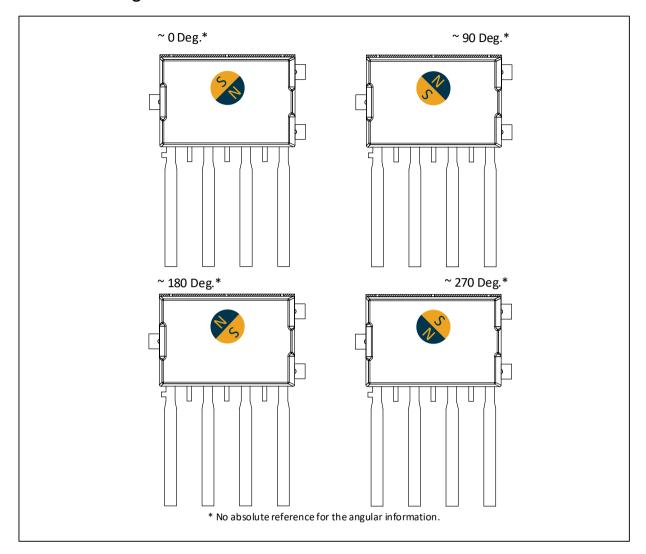


Figure 41 – SMP-4 Angle Detection

The MLX90425 is an absolute angular position sensor but the linearity error (See section 8) does not include the error linked to the absolute reference 0 Deg. (which can be fixed in the application through the discontinuity point).

Triaxis® Position Sensor IC

16.6. Packages Thermal Performances

The table below describes the thermal behavior of available packages following JEDEC EIA/JESD 51.X standard.

Package	Junction to case - θjc	Junction to ambient - θja (JEDEC 1s2p board)	Junction to ambient - θja (JEDEC 1s0p board)
SOIC-8	38.8 K/W	112 K/W	153 K/W
SMP-3	34.4 K/W	-	206 K/W (25)
DMP-4	32.2 K/W	-	88.7 K/W ⁽²⁵⁾
TSSOP-16_EP	26 K/W	42 K/W	150 K/W
SMP-4	26 K/W	-	145 K/W ⁽²⁵⁾

Table 56 – Standard packages thermal performances

REVISION 004 - 30 Jan 2025 Page 65 of 66

3901090425

²⁵ PCB-less solutions have been evaluated in a typical application case. Values for these packages are given as informative.

Triaxis® Position Sensor IC

Datasheet

17. Contact

For the latest version of this document, go to our website at www.melexis.com/MLX90425. For additional information, please get in touch, http://www.melexis.com/sales-contact.

18. Disclaimer

The content of this document is believed to be correct and accurate. However, the content of this document is furnished "as is" for informational use only and no representation, nor warranty is provided by Melexis about its accuracy, nor about the results of its implementation. Melexis assumes no responsibility or liability for any errors or inaccuracies that may appear in this document. Customer will follow the practices contained in this document under its sole responsibility. This documentation is in fact provided without warranty, term, or condition of any kind, either implied or expressed, including but not limited to warranties of merchantability, satisfactory quality, non-infringement, and fitness for purpose. Melexis, its employees and agents and its affiliates' and their employees and agents will not be responsible for any loss, however arising, from the use of, or reliance on this document. Notwithstanding the foregoing, contractual obligations expressly undertaken in writing by Melexis prevail over this disclaimer.

This document is subject to change without notice, and should not be construed as a commitment by Melexis. Therefore, before placing orders or prior to designing the product into a system, users or any third party should obtain the latest version of the relevant information.

Users or any third party must determine the suitability of the product described in this document for its application, including the level of reliability required and determine whether it is fit for a particular purpose.

This document as well as the product here described may be subject to export control regulations. Be aware that export might require a prior authorization from competent authorities. The product is not designed, authorized or warranted to be suitable in applications requiring extended temperature range and/or unusual environmental requirements. High reliability applications, such as medical life-support or life-sustaining equipment or avionics application are specifically excluded by Melexis. The product may not be used for the following applications subject to export control regulations: the development, production, processing, operation, maintenance, storage, recognition or proliferation of:

- 1. chemical, biological or nuclear weapons, or for the development, production, maintenance or storage of missiles for such weapons;
- 2. civil firearms, including spare parts or ammunition for such arms;
- 3. defense related products, or other material for military use or for law enforcement;
- 4. any applications that, alone or in combination with other goods, substances or organisms could cause serious harm to persons or goods and that can be used as a means of violence in an armed conflict or any similar violent situation.

No license nor any other right or interest is granted to any of Melexis' or third party's intellectual property rights.

If this document is marked "restricted" or with similar words, or if in any case the content of this document is to be reasonably understood as being confidential, the recipient of this document shall not communicate, nor disclose to any third party, any part of the document without Melexis' express written consent. The recipient shall take all necessary measures to apply and preserve the confidential character of the document. In particular, the recipient shall (i) hold document in confidence with at least the same degree of care by which it maintains the confidentiality of its own proprietary and confidential information, but no less than reasonable care; (ii) restrict the disclosure of the document solely to its employees for the purpose for which this document was received, on a strictly need to know basis and providing that such persons to whom the document is disclosed are bound by confidentiality terms substantially similar to those in this disclaimer; (iii) use the document only in connection with the purpose for which this document was received, and reproduce document only to the extent necessary for such purposes; (iv) not use the document for commercial purposes or to the detriment of Melexis or its customers. The confidentiality obligations set forth in this disclaimer will have indefinite duration and in any case they will be effective for no less than 10 years from the receipt of this document.

This disclaimer will be governed by and construed in accordance with Belgian law and any disputes relating to this disclaimer will be subject to the exclusive jurisdiction of the courts of Brussels, Belgium.

The invalidity or ineffectiveness of any of the provisions of this disclaimer does not affect the validity or effectiveness of the other provisions. The previous versions of this document are repealed.

 $\textit{Melexis} \ @ \ - \ \textit{No part of this document may be reproduced without the prior written consent of Melexis.} \ \ (2025)$

IATF 16949 and ISO 14001 Certified

REVISION 004 - 30 Jan 2025 Page 66 of 66