1. Features and Benefits

- Small size, low cost 32x24 pixels IR array
- Easy to integrate
- Industry standard four lead TO39 package
- Factory calibrated
- Noise Equivalent Temperature Difference (NETD) 0.1K RMS @1Hz refresh rate
- I²C compatible digital interface
- Programmable refresh rate 0.5Hz...64Hz
- 3.3V supply voltage
- Current consumption less than 23mA
- 2 FOV options – 55°x35° and 110°x75°
- Operating temperature -40°C ÷ 85°C
- Target temperature -40°C ÷ 300°C
- Complies with RoHS regulations

2. Application Examples

- High precision non-contact temperature measurements
- Intrusion / Movement detection
- Presence detection / Person localization
- Temperature sensing element for intelligent building air conditioning
- Thermal Comfort sensor in automotive Air Conditioning control system
- Microwave ovens
- Industrial temperature control of moving parts
- Visual IR thermometers
- Driver software for MCU available at: https://github.com/melexis/mlx90640-library.git

3. Description

The MLX90640 is a fully calibrated 32x24 pixels thermal IR array in an industry standard 4-lead TO39 package with digital interface.

The MLX90640 contains 768 FIR pixels. An ambient sensor is integrated to measure the ambient temperature of the chip and supply sensor to measure the VDD. The outputs of all sensors IR, Ta and VDD are stored in internal RAM and are accessible through I²C.
Contents

1. Features and Benefits .. 1
2. Application Examples .. 1
3. Description .. 1
4. Ordering Information ... 6
5. Glossary of Terms .. 7
6. Pin Definitions and Descriptions .. 8
7. Absolute Maximum Ratings .. 8
8. General Electrical Specifications .. 9
9. False pixel correction ... 10
10. Detailed General Description .. 10
 10.1. Pixel position ... 10
 10.2. Communication protocol ... 11
 10.2.1. Low level ... 11
 10.3. Measurement mode .. 12
 10.4. Refresh rate .. 12
 10.5. Measurement flow .. 13
 10.6. Reading patterns .. 14
 10.7. Address map .. 16
 10.7.1. Internal registers ... 16
 10.7.2. RAM .. 18
 10.7.3. EEPROM ... 19
11. Calculating Object Temperature .. 22
 11.1. Restoring calibration data from EERPOM ... 22
 11.1.1. Restoring the VDD sensor parameters ... 22
 11.1.2. Restoring the Ta sensor parameters ... 22
 11.1.3. Restoring the offset .. 23
 11.1.4. Restoring the Sensitivity $a_{i,j}$... 24
 11.1.5. Restoring the $K_v(i,j)$ coefficient .. 25
 11.1.6. Restoring the $K_{ta}(i,j)$ coefficient .. 25
 11.1.7. Restoring the GAIN coefficient (common for all pixels) ... 26
 11.1.8. Restoring the K_sTa coefficient (common for all pixels) ... 26
11.1.9. Restoring corner temperatures (common for all pixel) .. 26
11.1.10. Restoring the KsTo coefficient (common for all pixels) ... 27
11.1.11. Restoring sensitivity correction coefficients for each temperature range 27
11.1.12. Restoring the Sensitivity a_{CP} .. 28
11.1.13. Restoring the offset of the Compensation Pixel (CP) ... 28
11.1.14. Restoring the Kv CP coefficient ... 28
11.1.15. Restoring the Kta CP coefficient ... 28
11.1.16. Restoring the TGC coefficient ... 29
11.1.17. Restoring the resolution control coefficient ... 29

11.2. Temperature Calculation ... 30
11.2.1. Example Input Data .. 30
11.2.2. Temperature calculation .. 35

12. Performance graphs ... 47
12.1. Accuracy .. 47
12.2. Startup time ... 49
12.2.1. First valid data ... 49
12.2.2. Thermal behavior .. 49
12.2.3. Noise performance and resolution .. 50
12.3. Field of view (FOV) .. 52

13. Application information .. 53
13.1. Electrical considerations .. 53
13.2. Using the device in “image mode” ... 54

14. Application Comments .. 54

15. Mechanical drawings .. 56
15.1. FOV 55° ... 56
15.2. FOV 110° .. 57
15.3. Device marking .. 58

16. Standard Information ... 59
17. ESD Precautions .. 59
18. Revision history table ... 59
19. Contact .. 60
20. Disclaimer .. 60
Figure 28 Mechanical drawing of 110° FOV device
4. Ordering Information

<table>
<thead>
<tr>
<th>Product</th>
<th>Temperature</th>
<th>Package</th>
<th>Option Code</th>
<th>Custom Configuration</th>
<th>Packing Form</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLX90640</td>
<td>E</td>
<td>SF</td>
<td>BAA</td>
<td>000</td>
<td>TU</td>
<td>32x24 IR array</td>
</tr>
<tr>
<td>MLX90640</td>
<td>E</td>
<td>SF</td>
<td>BAB</td>
<td>000</td>
<td>TU</td>
<td>32x24 IR array</td>
</tr>
</tbody>
</table>

Legend:

<table>
<thead>
<tr>
<th>Temperature Code:</th>
<th>E: -40°C to 85°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package Code:</td>
<td>“SF” for TO39 package</td>
</tr>
<tr>
<td>Option Code:</td>
<td>xAx – TGC is disabled and may not be changed</td>
</tr>
<tr>
<td>Option Code:</td>
<td>xxA – FOV = 110°x75° xxB – FOV = 55°x35°</td>
</tr>
<tr>
<td>Custom configuration</td>
<td>000 – standard product</td>
</tr>
<tr>
<td>Packing Form:</td>
<td>“TU” - Tubes</td>
</tr>
<tr>
<td>Ordering Example:</td>
<td>“MLX90640ESF-BAA-000-TU”</td>
</tr>
</tbody>
</table>

Table 1 Ordering information
5. Glossary of Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>Temperature Coefficient (in ppm/°C)</td>
</tr>
<tr>
<td>POR</td>
<td>Power On Reset</td>
</tr>
<tr>
<td>IR</td>
<td>Infra-Red</td>
</tr>
<tr>
<td>Ta</td>
<td>Ambient Temperature – the temperature of the TO39 package</td>
</tr>
<tr>
<td>IR data</td>
<td>Infrared data (raw data from ADC proportional to IR energy received by the sensor)</td>
</tr>
<tr>
<td>ADC</td>
<td>Analog To Digital Converter</td>
</tr>
<tr>
<td>TGC</td>
<td>Temperature Gradient Coefficient</td>
</tr>
<tr>
<td>FOV</td>
<td>Field Of View</td>
</tr>
<tr>
<td>nFOV</td>
<td>Field Of View of the N-th pixel</td>
</tr>
<tr>
<td>(\text{i}^2\text{C})</td>
<td>Inter-Integrated Circuit communication protocol</td>
</tr>
<tr>
<td>SDA</td>
<td>Serial Data</td>
</tr>
<tr>
<td>SCL</td>
<td>Serial Clock</td>
</tr>
<tr>
<td>LSB</td>
<td>Least Significant Bit</td>
</tr>
<tr>
<td>MSB</td>
<td>Most Significant Bit</td>
</tr>
<tr>
<td>Fps</td>
<td>Frames per Second – data refresh rate</td>
</tr>
<tr>
<td>MD</td>
<td>Master Device</td>
</tr>
<tr>
<td>SD</td>
<td>Slave Device</td>
</tr>
<tr>
<td>ASP</td>
<td>Analog Signal Processing</td>
</tr>
<tr>
<td>DSP</td>
<td>Digital Signal Processing</td>
</tr>
<tr>
<td>ESD</td>
<td>Electro Static Discharge</td>
</tr>
<tr>
<td>EMC</td>
<td>Electro Magnetic Compatibility</td>
</tr>
<tr>
<td>CP</td>
<td>Compensation Pixel</td>
</tr>
<tr>
<td>NC</td>
<td>Not Connected</td>
</tr>
<tr>
<td>NA</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>TBD</td>
<td>To Be Defined</td>
</tr>
</tbody>
</table>

Table 2 Glossary of terms
6. Pin Definitions and Descriptions

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SDA</td>
<td>i^2C serial data (input / output)</td>
</tr>
<tr>
<td>2</td>
<td>VDD</td>
<td>Positive supply</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>Negative supply (Ground)</td>
</tr>
<tr>
<td>4</td>
<td>SCL</td>
<td>i^2C serial clock (input only)</td>
</tr>
</tbody>
</table>

Table 3 Pin definition

7. Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage (over voltage)</td>
<td>V_{DD}</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Supply Voltage (operating max voltage)</td>
<td>V_{DD}</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse Voltage (each pin)</td>
<td></td>
<td>-0.3</td>
<td></td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>T_{AMB}</td>
<td>-40</td>
<td>+85</td>
<td>+85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{ST}</td>
<td>-40</td>
<td>+125</td>
<td>+125</td>
<td>°C</td>
<td>Not in plastic tubes</td>
</tr>
<tr>
<td>ESD sensitivity (AEC Q100 002)</td>
<td></td>
<td>4</td>
<td></td>
<td>4</td>
<td>kV</td>
<td></td>
</tr>
<tr>
<td>SDA DC sink current</td>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

Table 4 Absolute maximum ratings

Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.
8. General Electrical Specifications

<table>
<thead>
<tr>
<th>Electrical Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>V_{DD}</td>
<td>3</td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Supply Current</td>
<td>I_{DD}</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>POR level up analog</td>
<td>V_{POR_UP}</td>
<td>2.2</td>
<td>2.6</td>
<td></td>
<td>V</td>
<td>VDD rising</td>
</tr>
<tr>
<td>POR level down analog</td>
<td>V_{POR_DOWN}</td>
<td>2.55</td>
<td></td>
<td></td>
<td>V</td>
<td>VDD falling</td>
</tr>
<tr>
<td>POR hysteresis</td>
<td>V_{POR_hys}</td>
<td>50</td>
<td></td>
<td></td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Default I^2C address</td>
<td>0x01</td>
<td>0x33</td>
<td>0xFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input high voltage (SDA, SCL)</td>
<td>V_{IH}</td>
<td>0.7*V_{DD}</td>
<td></td>
<td></td>
<td>V</td>
<td>Over Ta and V_{DD}</td>
</tr>
<tr>
<td>Input low voltage (SDA, SCL)</td>
<td>V_{LOW}</td>
<td></td>
<td>0.3*V_{DD}</td>
<td></td>
<td>V</td>
<td>Over Ta and V_{DD}</td>
</tr>
<tr>
<td>SDA output low voltage</td>
<td>V_{OL}</td>
<td>0.4</td>
<td></td>
<td></td>
<td>V</td>
<td>$I_{SINK}=3mA$</td>
</tr>
<tr>
<td>SDA leakage</td>
<td>I_{SDA_leak}</td>
<td>±10</td>
<td></td>
<td>μA</td>
<td>V_{SDA}=3.6V, Ta=85°C</td>
<td></td>
</tr>
<tr>
<td>SCL leakage</td>
<td>I_{SCL_leak}</td>
<td>±10</td>
<td></td>
<td>μA</td>
<td>V_{SCL}=3.6V, Ta=85°C</td>
<td></td>
</tr>
<tr>
<td>SDA capacitance</td>
<td>C_{SDA}</td>
<td>10</td>
<td></td>
<td>pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCL capacitance</td>
<td>C_{SCL}</td>
<td>10</td>
<td></td>
<td>pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acknowledge setup time</td>
<td>$T_{SUAC(MD)}$</td>
<td>0.45</td>
<td></td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acknowledge hold time</td>
<td>$T_{DUAC(MD)}$</td>
<td>0.45</td>
<td></td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acknowledge setup time</td>
<td>$T_{SUAC(SD)}$</td>
<td>0.45</td>
<td></td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acknowledge hold time</td>
<td>$T_{DUAC(SD)}$</td>
<td>0.45</td>
<td></td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I^2C clock frequency</td>
<td>F_{I^2C}</td>
<td>0.4</td>
<td>1</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEPROM erase/write cycles</td>
<td>10</td>
<td></td>
<td></td>
<td>times</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write cell time</td>
<td>T_{WRITE}</td>
<td>5</td>
<td></td>
<td>ms</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: For best performance it is recommended to keep the supply voltage as accurate and stable as possible to $3.3V \pm 0.1V$

NOTE 2: When a data in EEPROM cell to be changed an erase (write 0x0000) must be done prior to writing the new value. After each write at least 5ms delay is needed in order to writing process to take place.

NOTE 3: Slave address 0x00 must be avoided.
9. False pixel correction

The imager can have up to 4 defective pixels, with either no output or out of specification temperature reading. These pixels are identified in the EEPROM table of the sensor and can be read out through the I²C. The defective pixel result can be replaced by an interpolation of its neighboring pixels.

10. Detailed General Description

10.1. Pixel position

The array consists of 768 IR sensors (also called pixels). Each pixel is identified with its row and column position as \(\text{Pix}(i,j) \) where \(i \) is its row number (from 1 to 24) and \(j \) is its column number (from 1 to 32).

![Figure 3 Pixel in the whole FOV](image-url)
10.2. Communication protocol

The device uses the I²C protocol with support of FM+ mode (up to 1MHz clock frequency) and can be only slave on the bus. The SDA and SCL ports are 5V tolerant and the sensor can be directly connected to a 5V I²C network. The slave address is programmable and can have up to 127 different slave addresses.

10.2.1. Low level

10.2.1.1. Start / Stop conditions

Each communication session is initiated by a START condition and ends with a STOP condition. A START condition is initiated by a HIGH to LOW transition of the SDA while a STOP is generated by a LOW to HIGH transition. Both changes must be done while the SCL is HIGH.

10.2.1.2. Device addressing

The master is addressing the slave device by sending a 7-bit slave address after the START condition. The first seven bits are dedicated for the address and the 8th is Read/Write (R/W) bit. This bit indicates the direction of the transfer:

- Read (HIGH) means that the master will read the data from the slave
- Write (LOW) means that the master will send data to the slave

10.2.1.3. Acknowledge

During the 9th clock following every byte transfer the transmitter releases the SDA line. The receiver acknowledges (ACK) receiving the byte by pulling SDA line to low or does not acknowledge (NoACK) by letting the SDA ‘HIGH’.

10.2.1.4. I²C command format

![Figure 4] Figure 4 I²C write command format (default SA=0x33 is used)

![Figure 5] Figure 5 I²C read command format (default SA=0x33 is used)
10.3. Measurement mode

In this mode the measurements are constantly running. Depending on the selected frame rate F_p in the control register, the data for IR pixels and T_a will be updated in the RAM each $\frac{1}{F_p}$ second. In this mode the external microcontroller has full access to the internal registers and memories of the device.

10.4. Refresh rate

The refresh rate is configured by “Control register 1” (0x800D) i.e. if “Refresh rate control” = 011 → 4Hz this would mean that each 250ms a new subpage data is available in the RAM.

NOTE: It is possible to program the desired refresh rate into device EEPROM eliminating the necessity to reconfigure the device every time it is powered on. The corresponding EEPROM cell is at address 0x240C (see Table 8).

Which subpage is updated is indicated by the “Last measured subpage” field.

It is important to read both subpages as the necessary information for the T_a calculations is only available by combining the data from both subpages i.e. the T_a is refreshed with an update speed twice as low as the one set in “Refresh rate control”.

When a complete new data set (subpage) is available, a dedicated bit is set to indicate this – bit 3 “New data available in RAM” in “Status register” (0x8000). It is up to the customer to reset the bit once the data has been read.
10.5. Measurement flow

Following measurement flow is recommended:

Measurement Flow

Just once after POR

![Diagram of measurement flow](image)

Figure 7 Recommended measurement flow
10.6. Reading patterns

The array frame is divided in two subpages and depending of bit 12 in “Control register 1” (0x800D) – “Reading pattern” there are two modes of the pixel arrangement:

- Chess pattern mode (factory default)
- TV interleave mode

NOTE1: As a standard the MLX90640 is calibrated in Chess pattern mode, this results in better fixed pattern noise behaviour of the sensor when in chess pattern mode. For best results Melexis advices to use chess pattern mode.

NOTE2: Please make sure a proper configuration of the subpage control bit is done. See: Table 6 Priorities of subpage controls
Figure 8 TV mode reading pattern (only highlighted cells are updated)

Subpage 0 --> 0x8000 = 0xxx8

<table>
<thead>
<tr>
<th>x0400</th>
<th>x0410</th>
<th>x0420</th>
<th>x0430</th>
<th>x0440</th>
<th>x0450</th>
<th>x0460</th>
<th>x0470</th>
<th>x0480</th>
<th>x0490</th>
<th>x04A0</th>
<th>x04B0</th>
<th>x04C0</th>
<th>x04D0</th>
<th>x04E0</th>
<th>x04F0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Subpage 1 --> 0x8000 = 0xxx9

<table>
<thead>
<tr>
<th>x0500</th>
<th>x0510</th>
<th>x0520</th>
<th>x0530</th>
<th>x0540</th>
<th>x0550</th>
<th>x0560</th>
<th>x0570</th>
<th>x0580</th>
<th>x0590</th>
<th>x05A0</th>
<th>x05B0</th>
<th>x05C0</th>
<th>x05D0</th>
<th>x05E0</th>
<th>x05F0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Figure 9 Chess reading pattern (only highlighted cells are updated)

Subpage 0 --> 0x8000 = 0xxx8

<table>
<thead>
<tr>
<th>x0600</th>
<th>x0610</th>
<th>x0620</th>
<th>x0630</th>
<th>x0640</th>
<th>x0650</th>
<th>x0660</th>
<th>x0670</th>
<th>x0680</th>
<th>x0690</th>
<th>x06A0</th>
<th>x06B0</th>
<th>x06C0</th>
<th>x06D0</th>
<th>x06E0</th>
<th>x06F0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Subpage 1 --> 0x8000 = 0xxx9

<table>
<thead>
<tr>
<th>x0700</th>
<th>x0710</th>
<th>x0720</th>
<th>x0730</th>
<th>x0740</th>
<th>x0750</th>
<th>x0760</th>
<th>x0770</th>
<th>x0780</th>
<th>x0790</th>
<th>x07A0</th>
<th>x07B0</th>
<th>x07C0</th>
<th>x07D0</th>
<th>x07E0</th>
<th>x07F0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
10.7. Address map

There are a few internal registers that are customer accessible through which the device performance can be customized:

<table>
<thead>
<tr>
<th>Bit Positions</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enable overwrite</td>
</tr>
<tr>
<td></td>
<td>New data available in RAM</td>
</tr>
<tr>
<td></td>
<td>Last measured subpage controlled by MLX90641</td>
</tr>
<tr>
<td>B15 B14 B13</td>
<td>B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0</td>
</tr>
<tr>
<td>0 0 0 0</td>
<td>Measurement of subpage 0 has been measured</td>
</tr>
<tr>
<td>0 0 0 1</td>
<td>Measurement of subpage 1 has been measured</td>
</tr>
<tr>
<td>0 1 0</td>
<td>Melexis reserved</td>
</tr>
<tr>
<td>0 1 1</td>
<td>Melexis reserved</td>
</tr>
<tr>
<td>1 0 0</td>
<td>Melexis reserved</td>
</tr>
<tr>
<td>1 0 1</td>
<td>Melexis reserved</td>
</tr>
<tr>
<td>1 1 0</td>
<td>Melexis reserved</td>
</tr>
<tr>
<td>1 1 1</td>
<td>Melexis reserved</td>
</tr>
<tr>
<td>0 0</td>
<td>No new data is available in RAM (must be reset by the customer)</td>
</tr>
<tr>
<td>0 1</td>
<td>A new data is available in RAM</td>
</tr>
<tr>
<td>0</td>
<td>Data in RAM overwrite is disabled</td>
</tr>
<tr>
<td>1</td>
<td>Data in RAM overwrite is enabled</td>
</tr>
</tbody>
</table>

Figure 10 MXL90640 memory map

Figure 11 Status register (0x8000) bits meaning
Figure 12 Control register1 (0x800D) bits meaning

<table>
<thead>
<tr>
<th>Enable subpage mode (Bit 0)</th>
<th>Enable subpage repeat (Bit 3)</th>
<th>Select subpage (Bit 4)</th>
<th>Working mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-</td>
<td>measure subpage 0 only</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-</td>
<td>measure subpage 0 only</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>-</td>
<td>measure subpage 0 only</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0 → 1 → 0 → 1 ...</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>measure subpage 0 only</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>measure subpage 1 only</td>
</tr>
</tbody>
</table>

Table 6 Priorities of subpage controls (0x0800D)
Figure 13 I2C configuration register (0x800F) bits meaning

10.7.2. RAM

Figure 14 RAM memory map (Chess pattern mode) – factory default mode

Figure 15 RAM memory map (Interleaved mode)
10.7.3. EEPROM

The EEPROM is used to store the calibration constants and the configuration parameters of the device.

<table>
<thead>
<tr>
<th>EEPROM address</th>
<th>Access</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x2400</td>
<td>Melexis</td>
<td>Melexis reserved</td>
</tr>
<tr>
<td>0x2401</td>
<td>Melexis</td>
<td>Melexis reserved</td>
</tr>
<tr>
<td>0x2402</td>
<td>Melexis</td>
<td>Melexis reserved</td>
</tr>
<tr>
<td>0x2403</td>
<td>Melexis</td>
<td>Configuration register</td>
</tr>
<tr>
<td>0x2404</td>
<td>Melexis</td>
<td>Melexis reserved</td>
</tr>
<tr>
<td>0x2405</td>
<td>Melexis</td>
<td>Melexis reserved</td>
</tr>
<tr>
<td>0x2406</td>
<td>Melexis</td>
<td>Melexis reserved</td>
</tr>
<tr>
<td>0x2407</td>
<td>Melexis</td>
<td>Device ID1</td>
</tr>
<tr>
<td>0x2408</td>
<td>Melexis</td>
<td>Device ID2</td>
</tr>
<tr>
<td>0x2409</td>
<td>Melexis</td>
<td>Device ID3</td>
</tr>
<tr>
<td>0x240A</td>
<td>Melexis</td>
<td>Device Options</td>
</tr>
<tr>
<td>0x240B</td>
<td>Melexis</td>
<td>Melexis reserved</td>
</tr>
<tr>
<td>0x240C</td>
<td>Customer</td>
<td>Control_register_1</td>
</tr>
<tr>
<td>0x240D</td>
<td>Customer</td>
<td>Control_register_2</td>
</tr>
<tr>
<td>0x240E</td>
<td>Customer</td>
<td>I2CConfReg</td>
</tr>
<tr>
<td>0x240F</td>
<td>Customer</td>
<td>Melexis reserved / I2C_Address</td>
</tr>
</tbody>
</table>

Table 7 Configuration parameters memory

After POR the device reads dedicated EEPROM cells and transfers their content to the control and configuration register of the device. This way the device is configured and prepared for operation. The relation between EEPROM and register address is shown here after (explanation of the bit meaning can be found in section 10.7.1 Internal registers:

<table>
<thead>
<tr>
<th>EEPROM address</th>
<th>Register address</th>
<th>Access</th>
<th>Name</th>
<th>Data [hex]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x240C</td>
<td>0x800D</td>
<td>Customer</td>
<td>Control_register_1</td>
<td>1901</td>
</tr>
<tr>
<td>0x240D</td>
<td>0x800E</td>
<td>Customer</td>
<td>Control_register_2</td>
<td>0000</td>
</tr>
<tr>
<td>0x240E</td>
<td>0x800F</td>
<td>Customer</td>
<td>I2CConfReg</td>
<td>0000</td>
</tr>
<tr>
<td>0x240F</td>
<td>0x8010</td>
<td>Customer</td>
<td>Melexis internal use (8 bit)</td>
<td>BE33</td>
</tr>
</tbody>
</table>

Table 8 EEPROM to registers mapping
Table 9 EEPROM overview (words)

| Address | 0x2400 | 0x2410 | 0x2420 | 0x2430 | 0x2440 | 0x2450 | 0x2460 | 0x2470 | 0x2480 | 0x2490 | 0x24A0 | 0x24B0 | 0x24C0 | 0x24D0 | 0x24E0 | 0x24F0 | 0x2500 | 0x2510 | 0x2520 | 0x2530 | 0x2540 | 0x2550 | 0x2560 | 0x2570 | 0x2580 | 0x2590 | 0x25A0 | 0x25B0 | 0x25C0 | 0x25D0 | 0x25E0 | 0x25F0 |
|----------|
| D | 0 | Osc Trim | Ana Trim | Conf reg | MLX | ID 1 | ID 2 | ID 3 | MLX | MLX | Conf reg | Cont reg | Cont reg 2 | I2C conf | I2C addr | 0x2400 | 0x2410 | 0x2420 | 0x2430 | 0x2440 | 0x2450 | 0x2460 | 0x2470 | 0x2480 | 0x2490 | 0x24A0 | 0x24B0 | 0x24C0 | 0x24D0 | 0x24E0 | 0x24F0 |
| E | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| F | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

| Address | 0x2400 | 0x2410 | 0x2420 | 0x2430 | 0x2440 | 0x2450 | 0x2460 | 0x2470 | 0x2480 | 0x2490 | 0x24A0 | 0x24B0 | 0x24C0 | 0x24D0 | 0x24E0 | 0x24F0 | 0x2500 | 0x2510 | 0x2520 | 0x2530 | 0x2540 | 0x2550 | 0x2560 | 0x2570 | 0x2580 | 0x2590 | 0x25A0 | 0x25B0 | 0x25C0 | 0x25D0 | 0x25E0 | 0x25F0 |
|----------|
| G | 0 |
| H | 0 |
| I | 0 |

Notes:
- 768 x Offset, α, Kta, Outlier
NOTE 1: EEPROM addresses from 0x2440…0x273F contain the individual pixel calibration information and may not be equal to 0x0000. In case any pixel data is equal to 0x0000 this means that this particular pixels has failed and the calculation for To should not be trusted and avoided. Depending on the application, the To value for such pixels can be replaced with a default value such as -273.15°C, can be equal to Ta or one calculate an average value from the adjacent pixels.

NOTE 2: The LSB for EEPROM addresses from 0x2440…0x273F indicate if all pixel parameters are within the calibration specification. If this bit is set i.e. = "1" this would mean that at least one of the calibration parameters for this particular pixel is outside the calibration specifications and the pixel is considered as Outlier i.e. the sensor accuracy is not guaranteed by the calibration. Depending on the application one may have to choose to replace the measurement results of such pixel by an average of the temperature indicated by the adjacent pixels.

NOTE 3: The maximum number of deviating pixels is 4 (please check False pixel correction)

Table 10 Calibration parameters memory (EEPROM - bits)
11. Calculating Object Temperature

11.1. Restoring calibration data from EEPROM

NOTE: All data in the EEPROM is coded as two’s complement (unless otherwise noted)

In the example we are restoring the calibration data for pixel (12, 16)

11.1.1. Restoring the VDD sensor parameters

Following formula is used to calculate the VDD of the sensor:

\[V_{DD} = \frac{E[0x2433] \& 0xFF00}{2^8} \]

If \(V_{DD} > 127 \rightarrow V_{DD} = V_{DD} - 256 \)

\[V_{DD} = V_{DD} \times 2^5 \]

\[VDD_{25} = EE[0x2433] \& 0x00FF \]

\[VDD_{25} = (VDD_{25} - 256) \times 2^5 - 2^{13} \]

11.1.2. Restoring the Ta sensor parameters

Following formula is used to calculate the Ta of the sensor:

\[T_a = \frac{\Delta V_{PTAT} + 25}{K_{PTAT}} + 25 \text{ °C} \]

Where:

\[K_{V_{PTAT}} = \frac{EE[0x2432] \& 0xFC00}{2^{10}} \]

If \(K_{V_{PTAT}} > 31 \rightarrow K_{V_{PTAT}} = K_{V_{PTAT}} - 64 \)

\[K_{V_{PTAT}} = \frac{K_{V_{PTAT}}}{2^{12}} \]

\[K_{T_{PTAT}} = EE[0x2432] \& 0x03FF \]

If \(K_{T_{PTAT}} > 511 \rightarrow K_{T_{PTAT}} = K_{T_{PTAT}} - 1024 \)

\[K_{T_{PTAT}} = \frac{K_{T_{PTAT}}}{2^4} \]

\[\Delta V = \frac{RAM[0x072A] - VDD_{25}}{K_V} \]

\[V_{PTAT25} = EE[0x2431] \]
If $V_{PTAT2S} > 32767 \Rightarrow V_{PTAT2S} = V_{PTAT2S} - 65536$

$$V_{PTAT_{art}} = \left(\frac{V_{PTAT}}{V_{PTAT} \times \text{Alpha}_{PTAT} + V_{BE}} \right) \times 2^{18}$$

Where:

$V_{PTAT} = \text{RAM}[0x0720]$

If $V_{PTAT} > 32767 \Rightarrow V_{PTAT} = V_{PTAT} - 65536$

$V_{BE} = \text{RAM}[0x0700]$

If $V_{BE} > 32767 \Rightarrow V_{BE} = V_{BE} - 65536$

$\text{Alpha}_{PTAT, EE} = \frac{EE[0x2410] \& 0xF000}{2^{12}}$

$\text{Alpha}_{PTAT} = \frac{\text{Alpha}_{PTAT, EE}}{2^{2}} + 8$

11.1.3. Restoring the offset

$$\text{pix}_{\text{os, ref}}(i, j) = \text{Offset}_{\text{average}} + \text{OCC}_{\text{row}_1} \times 2^{\text{OCC}_{\text{scale, row}}} + \text{OCC}_{\text{column}_1} \times 2^{\text{OCC}_{\text{scale, column}}} + \text{offset}(i, j) \times 2^{\text{OCC}_{\text{scale, remnant}}}$$

$\text{Offset}_{\text{average}} = EE[0x2411]$

If $\text{Offset}_{\text{average}} > 32767 \Rightarrow \text{Offset}_{\text{average}} = \text{Offset}_{\text{average}} - 65536$

$\text{OCC}_{\text{row}_1} = \frac{EE[0x2414] \& 0xF000}{2^{12}}$ (i.e. the four most significant bits, signed)

If $\text{OCC}_{\text{row}_1} > 7 \Rightarrow \text{OCC}_{\text{row}_1} = \text{OCC}_{\text{row}_1} - 16$

$\text{OCC}_{\text{scale, row}} = \frac{EE[0x2410] \& 0xF000}{2^{8}}$ (unsigned)

$\text{OCC}_{\text{column}_1} = \frac{EE[0x2418] \& 0xF000}{2^{12}}$ (i.e. the four most significant bits, signed)

If $\text{OCC}_{\text{column}_1} > 7 \Rightarrow \text{OCC}_{\text{column}_1} = \text{OCC}_{\text{column}_1} - 16$

$\text{OCC}_{\text{scale, column}} = \frac{EE[0x2410] \& 0xF000}{2^{4}}$ (unsigned)

$\text{OCC}_{\text{scale, remnant}} = \frac{EE[0x2410] \& 0xF000}{2^{10}}$ (i.e. the six most significant bits, signed)

If $\text{Offset}(12, 16) > 31 \Rightarrow \text{Offset}(12, 16) = \text{Offset}(12, 16) - 64$

$\text{OCC}_{\text{scale, remnant}} = EE[0x2410] \& 0x000F$ (unsigned)

11.1.3.1. Restoring the offset in case of Interleaved reading pattern

To compensate the IR data for interleaved reading pattern following formula is used:

$$\text{pix}_{\text{os}}(i, j) = \text{pix}_{\text{os, ref}}(i, j) + H_{\text{Grazer}} \times (2 \times H_{\text{Pattern}} - 1) - H_{\text{Grazer}} \times \text{Conversion}_{\text{pattern}} - \text{pix}_{\text{os, ref}} \times \left((1 + K_{T80, L}) \times (T_8 - T_80) \right) \times \left((1 + K_{V, L}) \times (V_{ES} - V_{DLY}) \right)$$
Highlighted in yellow parameters are extracted here after.

As a default the device is factory calibrated in Chess pattern mode thus the best performance will be when a Chess pattern is used. However some customers may choose to use the device in interleaved mode which will degrade the device performance. In this case a correction can be applied to restore to some extend the performance. Once the IR data is compensated the calculation for To is done using default flow. The goal of this correction is to equalize the offset of the pixels due to the different pattern reading modes. We can achieve this by using several correction coefficients stored into the device EEPROM extracted and decoded as follows:

\[IL_{CHESS_{C1}} = EE[0x2435] & 0x003F \]

If \(IL_{CHESS_{C1}} > 31 \) \(\rightarrow IL_{CHESS_{C1}} = IL_{CHESS_{C1}} - 64 \)

\[IL_{CHESS_{C1}} = \frac{IL_{CHESS_{C1}}}{2^4} \]

\[IL_{CHESS_{C2}} = EE[0x2435] & 0x07C0 \]

If \(IL_{CHESS_{C2}} > 15 \) \(\rightarrow IL_{CHESS_{C2}} = IL_{CHESS_{C2}} - 32 \)

\[IL_{CHESS_{C2}} = \frac{IL_{CHESS_{C2}}}{2} \]

\[IL_{CHESS_{C3}} = EE[0x2435] & 0xF800 \]

If \(IL_{CHESS_{C3}} > 15 \) \(\rightarrow IL_{CHESS_{C3}} = IL_{CHESS_{C3}} - 32 \)

\[IL_{CHESS_{C3}} = \frac{IL_{CHESS_{C3}}}{2^3} \]

The above calculated parameters have to be applied as a correction for the offset of each individual pixel. We do need additional patterns in order to make these calculations and the formula to calculate those patterns are as shown below depending on the pixels number:

\[IL_{PATTERN} = \text{int}\left(\frac{\text{pixel}_\text{number} - 3}{32}\right) - \text{int}\left(\frac{\text{pixel}_\text{number} - 1}{32}\right) \times 2 \]

\[Conversion_{pattern} = \left(\text{int}\left(\frac{\text{pixel}_\text{number} - 3}{4}\right) - \text{int}\left(\frac{\text{pixel}_\text{number} - 2}{4}\right) + \text{int}\left(\frac{\text{pixel}_\text{number}}{4}\right) - \text{int}\left(\frac{\text{pixel}_\text{number} - 1}{4}\right)\right) \times \left(1 - 2 \times IL_{PATTERN}\right) \]

11.1.4. Restoring the Sensitivity \(\alpha_{i,j} \)

\[\alpha_{i,j} = \frac{\alpha_{\text{reference}} + ACC_{\text{row}} \times 2^{AC_{\text{scale}row}} + ACC_{\text{column}} \times 2^{AC_{\text{scale}column}} + \alpha_{\text{pixel}(i,j)} \times 2^{AC_{\text{scale}remnant}}}{2^{8_\text{scale}}} \]

Where (calculating for pixel (12,16)) :

\[\alpha_{\text{reference}} = EE[0x2421] \]

\[\alpha_{\text{scale}} = \frac{EE[0x2420] & 0xF000}{2^{12}} + 30 \]
\[
ACC_{row_{12}} = \frac{EE[0x2424] & 0xF000}{2^{12}} \quad \text{(i.e. the four most significant bits, signed)}
\]

If \(ACC_{row_{12}} > 7 \rightarrow ACC_{row_{12}} = ACC_{row_{12}} - 16 \)

\[
ACC_{scale}_{row} = \frac{EE[0x2420] & 0xF000}{2^{8}} \quad \text{(unsigned)}
\]

\[
ACC_{column_{16}} = \frac{EE[0x242B] & 0xF000}{2^{12}} \quad \text{(i.e. the four most significant bits, signed)}
\]

If \(ACC_{column_{16}} > 7 \rightarrow ACC_{column_{16}} = ACC_{column_{16}} - 16 \)

\[
ACC_{scale}_{column} = \frac{EE[0x2420] & 0xF000}{2^{8}} \quad \text{(unsigned)}
\]

\[
\alpha_{pixel}(12,16) = \frac{EE[0x258F] & 0x03F0}{2^{4}}
\]

If \(\alpha_{pixel}(12,16) > 3 \rightarrow \alpha_{pixel}(12,16) = \alpha_{pixel}(12,16) - 64 \)

\[
ACC_{scale}_{remainder} = EE[0x2420] & 0x000F \quad \text{(unsigned)}
\]

11.1.5. Restoring the \(K_v(i,j) \) coefficient

\(K_v(i,j) \) depend on the pixel position in the array i.e. if the pixel row and column is odd or even.

If row number is \text{ODD} (1, 3, 5...23) and column number is \text{ODD} (1, 3, 5...31) then
\[
K_v(i,j) = EE[0x2434] & 0xF000
\]

If row number is \text{EVEN} (2, 4, 6...24) and column number is \text{ODD} (1, 3, 5...31) then
\[
K_v(i,j) = EE[0x2434] & 0xF000
\]

If row number is \text{ODD} (1, 3, 5...23) and column number is \text{EVEN} (2, 4, 6...32) then
\[
K_v(i,j) = EE[0x2434] & 0xF000
\]

If row number is \text{EVEN} (2, 4, 6...24) and column number is \text{EVEN} (2, 4, 6...32) then
\[
K_v(i,j) = EE[0x2434] & 0xF000
\]

If \(K_v(i,j) > 7 \rightarrow K_v(i,j) = K_v(i,j) - 16 \)

\[
K_v(12,16) = \frac{K_v(i,j)}{2^{12}} \quad \text{(signed)}
\]

Where:

\[
K_v_{scale} = EE[0x2438] & 0xF000 \quad \text{(unsigned)}
\]

11.1.6. Restoring the \(K_{ta}(i,j) \) coefficient

\[
K_{ta}(12,16) = \frac{K_{ta_{RC,EE} + K_{ta(12,16),EE} + K_{ta_{scale,2}}}}{K_{ta_{scale,1}}}
\]

Where:

\[
K_{ta(12,16),EE} = EE[0x25AF] & 0x000E \quad \text{(signed)}
\]

If \(K_{ta(12,16),EE} > 3 \rightarrow K_{ta(12,16),EE} = K_{ta(12,16),EE} - 8 \)
$K_{Ta,RC,EE}$ depends on the pixel position in the array i.e. if the pixel row and column is odd or even

If row number is ODD (1, 3, 5...23) and column number is ODD (1, 3, 5...31) then $K_{Ta,RC,EE} = \frac{EE[0x2436] & 0xFF00}{2^n}$

If row number is EVEN (2, 4, 6...24) and column number is ODD (1, 3, 5...31) then $K_{Ta,RC,EE} = EE[0x2437] & 0x0FF00$

If row number is ODD (1, 3, 5...23) and column number is EVEN (2, 4, 6...32) then $K_{Ta,RC,EE} = 02436 & 0FF00$

If row number is EVEN (2, 4, 6...24) and column number is EVEN (2, 4, 6...32) then $K_{Ta,RC,EE} = 02437 & 0x0FF00$

If $K_{Ta,RC,EE} > 127 \rightarrow K_{Ta,RC,EE} = K_{Ta,RC,EE} - 256$

$K_{Ta,Scale,1} = \frac{EE[0x2439] & 0x00F0}{2^n}$ + % (unsigned)

$K_{Ta,Scale,2} = EE[0x2438] & 0x00FF$ (unsigned)

11.1.7. Restoring the GAIN coefficient (common for all pixels)

GAIN = $EE[0x2430]$ (signed)

If GAIN > 32767 \rightarrow GAIN = GAIN – 65536

11.1.8. Restoring the KsTa coefficient (common for all pixels)

$K_{sTa} = \frac{K_{sTa,EE}}{2^n}$

Where:

$K_{sTa,EE} = \frac{EE[0x243C] & 0xFF00}{2^n}$ (signed)

If $K_{sTa,EE} > 127 \rightarrow K_{sTa,EE} = K_{sTa,EE} - 256$

11.1.9. Restoring corner temperatures (common for all pixel)

The information regarding corner temperatures is stored into device EEPROM and is restored as follows:

$Step = \frac{EE[0x243F] & 0x3000}{2^{12}} \times 10$

$CT3 = \frac{EE[0x243F] & 0x00F0}{2^n} \times Step$

$CT4 = \frac{EE[0x243F] & 0x0000}{2^n} \times Step + CT3$

Or we can construct the temperatures for the ranges as follows:

CT1=-40°C (hard coded) < Range 1 > CT2=0°C (hard coded) < Range 2 > CT3 < Range 3 > CT4 < Range 4
11.1.10. Restoring the KsTo coefficient (common for all pixels)

\[K_{S_{To1}} = \frac{K_{S_{To1,EE}}}{2^{K_{S_{To1,EE}}}} \]

Where:

\[K_{S_{To1,EE}} = EE[0x243F] \& 0x000F + 8 \text{ (unsigned)} \]

Where:

\[K_{S_{To1,EE}} = EE[0x243D] \& 0x00FF \text{ (signed)} \]

If \(K_{S_{To1,EE}} > 127 \rightarrow K_{S_{To1,EE}} = K_{S_{To1,EE}} - 256 \)

\[K_{S_{To2}} = \frac{K_{S_{To2,EE}}}{2^{K_{S_{To2,EE}}}} \]

Where:

\[K_{S_{To2,EE}} = \frac{EE[0x243D] \& 0xFF00}{2^{8}} \text{ (signed)} \]

If \(K_{S_{To2,EE}} > 127 \rightarrow K_{S_{To2,EE}} = K_{S_{To2,EE}} - 256 \)

\[K_{S_{To3}} = \frac{K_{S_{To3,EE}}}{2^{K_{S_{To3,EE}}}} \]

Where:

\[K_{S_{To3,EE}} = EE[0x243E] \& 0x00FF \text{ (signed)} \]

If \(K_{S_{To3,EE}} > 127 \rightarrow K_{S_{To3,EE}} = K_{S_{To3,EE}} - 256 \)

\[K_{S_{To4}} = \frac{K_{S_{To4,EE}}}{2^{K_{S_{To4,EE}}}} \]

Where:

\[K_{S_{To4,EE}} = \frac{EE[0x243E] \& 0x00FF}{2^{8}} \text{ (signed)} \]

If \(K_{S_{To4,EE}} > 127 \rightarrow K_{S_{To4,EE}} = K_{S_{To4,EE}} - 256 \)

11.1.11. Restoring sensitivity correction coefficients for each temperature range

\[\alpha_{corr_{range1}} = \frac{1}{(1 + K_{STo1} \times (0 - (-40)))} \]

\[\alpha_{corr_{range2}} = 1 \]

\[\alpha_{corr_{range3}} = 1 + K_{STo2} \times (CT3 - 0) \]

\[\alpha_{corr_{range4}} = (1 + K_{STo2} \times (CT3 - 0)) \times (1 + K_{STo3} \times (CT4 - CT3)) \]
11.1.12. Restoring the Sensitivity α_{CP}

Please note that there are two sensitivities for the compensation pixel – one for each subpage

$$\alpha_{CP_subpage_0} = \frac{EE[0x2439] & 0x03FF}{2^{12}}$$

$$\alpha_{CP_subpage_1} = \alpha_{CP_subpage_0} \times \left(1 + \frac{CP_P1/P0_ratio}{2^7}\right)$$

Where:

$$\alpha_{scale_CP} = \frac{EE[0x2420] & 0xF000}{2^{12}} + 27$$

$$CP_P1/P0_ratio = \frac{EE[0x2439] & 0xF000}{2^{10}} \text{ (signed)}$$

If $CP_P1/P0_ratio > 31 \rightarrow CP_P1/P0_ratio = CP_P1/P0_ratio - 64$

11.1.13. Restoring the offset of the Compensation Pixel (CP)

Please note that there are two offsets for the compensation pixel – one for each subpage

$$Off_CP_subpage_0 = \frac{EE[0x243A] & 0x03FF}{2^{10}} \text{ (signed)}$$

If $Off_CP_subpage_0 > 511 \rightarrow Off_CP_subpage_0 = Off_CP_subpage_0 - 1024$

$$Off_CP_subpage_1 = Off_CP_subpage_0 + Off_CP_subpage_1_delta$$

Where:

$$Off_CP_subpage_1_delta = \frac{EE[0x243A] & 0xF000}{2^{10}} \text{ (signed)}$$

If $Off_CP_subpage_1_delta > 31 \rightarrow Off_CP_subpage_1_delta = Off_CP_subpage_1_delta - 64$

11.1.14. Restoring the K_v CP coefficient

$$K_v_CP = \frac{K_v_ee}{2^{a_scale_CP}}$$

$$K_v_scale = \frac{EE[0x2438] & 0xF000}{2^b} \text{ (unsigned) (the same one as for the } K_v(i,j) \text{ coefficients)}$$

Where:

$$K_v_ee = \frac{EE[0x243A] & 0xF000}{2^b} \text{ (signed)}$$

If $K_v_ee > 127 \rightarrow K_v_ee = K_v_ee - 256$

11.1.15. Restoring the K_t CP coefficient

$$K_t_CP = \frac{K_t_ee}{2^{a_scale_CP}}$$
Where:

$$K_{T_{\text{SC}}_{i,j}} = \frac{EE[0x243B] \& 0x00FF}{2^4} + 8$$

(unsinged) (the same one as for the $K_{T_{a(i,j)}}$ coefficients)

$$K_{T_{\text{SCP},EE}} = EE[0x243B] \& 0x00FF \text{ (signed)}$$

If $K_{T_{\text{SCP},EE}} > 127 \Rightarrow K_{T_{\text{SCP},EE}} = K_{T_{\text{SCP},EE}} - 256$

11.1.16. Restoring the TGC coefficient

$$TGC = \frac{TGC_{EE}}{2^5}$$

Where:

$$TGC_{EE} = EE[0x243C] \& 0x00FF \text{ (signed)}$$

If $TGC_{EE} > 127 \Rightarrow TGC_{EE} = TGC_{EE} - 256$

NOTE 1: In a MLX90640ESF–BAx–000-TU device, the TGC coefficient is set to 0 and must not be changed.

NOTE 2: In a MLX90640ESF–BCx–000-TU device, the EEPROM contains a typical value for the TGC coefficient but the user may choose to adjust the value such to best fit for a specific application. Using the TGC increases noise in the temperature calculations which can be reduced by external filtering (averaging) of the CP sensor data. By making the TGC coefficient “0” the gradients compensation is bypassed.

11.1.17. Restoring the resolution control coefficient

$$\text{Resolution}_{EE} = \frac{EE[0x243B] \& 0x3000}{2^{12}} \text{ (unsigned)}$$
11.2. Temperature Calculation

11.2.1. Example Input Data

11.2.1.1. Example Measurement Data

<table>
<thead>
<tr>
<th>Input data name</th>
<th>Input data value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object temperature</td>
<td>80°C</td>
</tr>
<tr>
<td>Emissivity (ε)</td>
<td>1</td>
</tr>
<tr>
<td>Control register 1 (Res_ctrl)</td>
<td>0x0901 (2 decimal)</td>
</tr>
<tr>
<td>RAM[0x056F] (pix(12,16) data)</td>
<td>0x0261 (609)</td>
</tr>
<tr>
<td>Vbe - RAM[0x0700]</td>
<td>0x4BF2 (19442)</td>
</tr>
<tr>
<td>CP subpage 0 – RAM[0x0708]</td>
<td>0xFFCA (-54)</td>
</tr>
<tr>
<td>CP subpage 1 – RAM[0x0728]</td>
<td>0xFFC8 (-56)</td>
</tr>
<tr>
<td>GAIN - RAM[0x070A]</td>
<td>0x1881 (6273)</td>
</tr>
<tr>
<td>PTAT - RAM[0x0720]</td>
<td>0x06AF (1711)</td>
</tr>
<tr>
<td>VDD - RAM[0x072A]</td>
<td>0xC55 (-13115)</td>
</tr>
</tbody>
</table>

Table 11 Calculation example input data

11.2.1.2. Example Calibration Data

<table>
<thead>
<tr>
<th>EEPROM address</th>
<th>Calibration parameter name</th>
<th>Parameter value</th>
<th>Decoded value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x2410</td>
<td>K_PTAT – 4 bits</td>
<td>0x4210</td>
<td>K_PTAT = 9</td>
</tr>
<tr>
<td></td>
<td>Scale_OCC_row – 4 bits</td>
<td></td>
<td>Scale_OCC_row = 2</td>
</tr>
<tr>
<td></td>
<td>Scale_OCC_column – 4 bits</td>
<td></td>
<td>Scale_OCC_column = 1</td>
</tr>
<tr>
<td></td>
<td>Scale_OCC_remnand – 4 bits</td>
<td></td>
<td>Scale_OCC_remnand = 0</td>
</tr>
<tr>
<td>0x2411</td>
<td>Pix_os_average – 16 bits</td>
<td>0xFFBB</td>
<td>Pix_os_average = -69</td>
</tr>
<tr>
<td>0x2412</td>
<td>OCC_rows_04 – 4 bits</td>
<td>0x0202</td>
<td>OCC_rows_04 = 0</td>
</tr>
<tr>
<td></td>
<td>OCC_rows_03 – 4 bits</td>
<td></td>
<td>OCC_rows_03 = 2</td>
</tr>
<tr>
<td></td>
<td>OCC_rows_02 – 4 bits</td>
<td></td>
<td>OCC_rows_02 = 0</td>
</tr>
<tr>
<td></td>
<td>OCC_rows_01 – 4 bits</td>
<td></td>
<td>OCC_rows_01 = 2</td>
</tr>
<tr>
<td>0x2413</td>
<td>OCC_rows_08 – 4 bits</td>
<td>0xF202</td>
<td>OCC_rows_08 = -1</td>
</tr>
<tr>
<td></td>
<td>OCC_rows_07 – 4 bits</td>
<td></td>
<td>OCC_rows_07 = 2</td>
</tr>
<tr>
<td></td>
<td>OCC_rows_06 – 4 bits</td>
<td></td>
<td>OCC_rows_06 = 0</td>
</tr>
<tr>
<td></td>
<td>OCC_rows_05 – 4 bits</td>
<td></td>
<td>OCC_rows_05 = 2</td>
</tr>
<tr>
<td>0x2414</td>
<td>OCC_rows_12 – 4 bits</td>
<td>0xF2F2</td>
<td>OCC_rows_12 = -1</td>
</tr>
<tr>
<td></td>
<td>OCC_rows_11 – 4 bits</td>
<td></td>
<td>OCC_rows_11 = 2</td>
</tr>
</tbody>
</table>
| OCC_rows_10 – 4 bits | OCC_rows_10 = -1
OCC_rows_09 – 4 bits
OCC_rows_09 = 2 |
|----------------------|-----------------|
| OCC_rows_16 – 4 bits | 0xE2E2
OCC_rows_15 – 4 bits
OCC_rows_14 – 4 bits
OCC_rows_13 – 4 bits
OCC_rows_16 = -2
OCC_rows_15 = 2
OCC_rows_14 = -2
OCC_rows_13 = 2 |
|----------------------|-----------------|
| OCC_rows_20 – 4 bits | 0xD1E1
OCC_rows_19 – 4 bits
OCC_rows_18 – 4 bits
OCC_rows_17 – 4 bits
OCC_rows_20 = -3
OCC_rows_19 = 1
OCC_rows_18 = -2
OCC_rows_17 = 1 |
|----------------------|-----------------|
| OCC_column_04 – 4 bits | 0xF10F
OCC_column_03 – 4 bits
OCC_column_02 – 4 bits
OCC_column_01 – 4 bits
OCC_column_04 = -1
OCC_column_03 = 1
OCC_column_02 = 0
OCC_column_01 = -1 |
|----------------------|-----------------|
| OCC_column_08 – 4 bits | 0xF00F
OCC_column_07 – 4 bits
OCC_column_06 – 4 bits
OCC_column_05 – 4 bits
OCC_column_08 = -1
OCC_column_07 = 0
OCC_column_06 = 0
OCC_column_05 = -1 |
|----------------------|-----------------|
| OCC_column_12 – 4 bits | 0xE0EF
OCC_column_11 – 4 bits
OCC_column_10 – 4 bits
OCC_column_09 – 4 bits
OCC_column_12 = -2
OCC_column_11 = 0
OCC_column_10 = -2
OCC_column_09 = -1 |
|----------------------|-----------------|
| OCC_column_16 – 4 bits | 0xE0EF
OCC_column_15 – 4 bits
OCC_column_14 – 4 bits
OCC_column_13 – 4 bits
OCC_column_16 = -2
OCC_column_15 = 0
OCC_column_14 = -2
OCC_column_13 = -1 |
|----------------------|-----------------|
| OCC_column_20 – 4 bits | 0xE1E1
OCC_column_19 – 4 bits
OCC_column_18 – 4 bits
OCC_column_17 – 4 bits
OCC_column_20 = -2
OCC_column_19 = 1
OCC_column_18 = -2
OCC_column_17 = 1 |
|----------------------|-----------------|
| OCC_column_24 – 4 bits | 0xF3F2
OCC_column_23 – 4 bits
OCC_column_22 – 4 bits
OCC_column_21 – 4 bits
OCC_column_24 = -1
OCC_column_23 = 3
OCC_column_22 = -1
OCC_column_21 = 2 |
|----------------------|-----------------|
| OCC_column_28 – 4 bits | 0xF404
OCC_column_27 – 4 bits
OCC_column_26 – 4 bits
OCC_column_25 – 4 bits
OCC_column_28 = -1
OCC_column_27 = 4
OCC_column_26 = 0
OCC_column_25 = 4 |
|----------------------|-----------------|
| OCC_column_32 – 4 bits | 0xE504
OCC_column_31 – 4 bits
OCC_column_30 – 4 bits
OCC_column_29 – 4 bits
OCC_column_32 = -2
OCC_column_31 = 5 |
OCC_column_30 – 4 bits
OCC_column_29 – 4 bits

| 0x2420 | Alpha scale – 4 bits
| Scale_ACC_row – 4 bits
| Scale_ACC_column – 4 bits
| Scale_ACC_remnant – 4 bits | 0x79A6 | Alpha scale = 37
| Scale_ACC_row = 9
| Scale_ACC_column = 10
| Scale_ACC_remnant = 6 |

| 0x2421 | Pix_sensitivity_average - 16 bits | 0x2F44 | Pix_sensitivity_average = 8.80391E-08 |

| 0x2422 | ACC_rows_04 – 4 bits
| ACC_rows_03 – 4 bits
| ACC_rows_02 – 4 bits
| ACC_rows_01 – 4 bits | 0xFFDD | ACC_rows_04 = -1
| ACC_rows_03 = -1
| ACC_rows_02 = -3
| ACC_rows_01 = -3 |

| 0x2423 | ACC_rows_08 – 4 bits
| ACC_rows_07 – 4 bits
| ACC_rows_06 – 4 bits
| ACC_rows_05 – 4 bits | 0x2210 | ACC_rows_08 = 2
| ACC_rows_07 = 2
| ACC_rows_06 = 1
| ACC_rows_05 = 0 |

| 0x2424 | ACC_rows_12 – 4 bits
| ACC_rows_11 – 4 bits
| ACC_rows_10 – 4 bits
| ACC_rows_09 – 4 bits | 0x3333 | ACC_rows_12 = 3
| ACC_rows_11 = 3
| ACC_rows_10 = 3
| ACC_rows_09 = 3 |

| 0x2425 | ACC_rows_16 – 4 bits
| ACC_rows_15 – 4 bits
| ACC_rows_14 – 4 bits
| ACC_rows_13 – 4 bits | 0x2233 | ACC_rows_16 = 2
| ACC_rows_15 = 2
| ACC_rows_14 = 3
| ACC_rows_13 = 3 |

| 0x2426 | ACC_rows_20 – 4 bits
| ACC_rows_19 – 4 bits
| ACC_rows_18 – 4 bits
| ACC_rows_17 – 4 bits | 0xEF01 | ACC_rows_20 = -2
| ACC_rows_19 = -1
| ACC_rows_18 = 0
| ACC_rows_17 = 1 |

| 0x2427 | ACC_rows_24 – 4 bits
| ACC_rows_23 – 4 bits
| ACC_rows_22 – 4 bits
| ACC_rows_21 – 4 bits | 0x9ACC | ACC_rows_24 = -7
| ACC_rows_23 = -6
| ACC_rows_22 = -4
| ACC_rows_21 = -4 |

| 0x2428 | ACC_column_04 – 4 bits
| ACC_column_03 – 4 bits
| ACC_column_02 – 4 bits
| ACC_column_01 – 4 bits | 0xEEDC | ACC_column_04 = -1
| ACC_column_03 = -1
| ACC_column_02 = -2
| ACC_column_01 = -3 |

| 0x2429 | ACC_column_08 – 4 bits
| ACC_column_07 – 4 bits
| ACC_column_06 – 4 bits
| ACC_column_05 – 4 bits | 0x10FF | ACC_column_08 = 1
| ACC_column_07 = 0
| ACC_column_06 = -1
| ACC_column_05 = -1 |

| 0x242A | ACC_column_12 – 4 bits
| ACC_column_11 – 4 bits
| ACC_column_10 – 4 bits
| ACC_column_09 – 4 bits | 0x2221 | ACC_column_12 = 2
| ACC_column_11 = 2
| ACC_column_10 = 2
<p>| ACC_column_09 = 1 |</p>
<table>
<thead>
<tr>
<th>Address</th>
<th>Parameters</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x242B</td>
<td>ACC_column_16 – 4 bits</td>
<td>0x3333</td>
<td>ACC_column_16 = 3</td>
</tr>
<tr>
<td></td>
<td>ACC_column_15 – 4 bits</td>
<td></td>
<td>ACC_column_15 = 3</td>
</tr>
<tr>
<td></td>
<td>ACC_column_14 – 4 bits</td>
<td></td>
<td>ACC_column_14 = 3</td>
</tr>
<tr>
<td></td>
<td>ACC_column_13 – 4 bits</td>
<td></td>
<td>ACC_column_13 = 3</td>
</tr>
<tr>
<td>0x242C</td>
<td>ACC_column_20 – 4 bits</td>
<td>0x2333</td>
<td>ACC_column_20 = 2</td>
</tr>
<tr>
<td></td>
<td>ACC_column_19 – 4 bits</td>
<td></td>
<td>ACC_column_19 = 3</td>
</tr>
<tr>
<td></td>
<td>ACC_column_18 – 4 bits</td>
<td></td>
<td>ACC_column_18 = 3</td>
</tr>
<tr>
<td></td>
<td>ACC_column_17 – 4 bits</td>
<td></td>
<td>ACC_column_17 = 3</td>
</tr>
<tr>
<td>0x242D</td>
<td>ACC_column_24 – 4 bits</td>
<td>0x0112</td>
<td>ACC_column_24 = 0</td>
</tr>
<tr>
<td></td>
<td>ACC_column_23 – 4 bits</td>
<td></td>
<td>ACC_column_23 = 1</td>
</tr>
<tr>
<td></td>
<td>ACC_column_22 – 4 bits</td>
<td></td>
<td>ACC_column_22 = 1</td>
</tr>
<tr>
<td></td>
<td>ACC_column_21 – 4 bits</td>
<td></td>
<td>ACC_column_21 = 2</td>
</tr>
<tr>
<td>0x242E</td>
<td>ACC_column_28 – 4 bits</td>
<td>0xEEFF</td>
<td>ACC_column_28 = -2</td>
</tr>
<tr>
<td></td>
<td>ACC_column_27 – 4 bits</td>
<td></td>
<td>ACC_column_27 = -2</td>
</tr>
<tr>
<td></td>
<td>ACC_column_26 – 4 bits</td>
<td></td>
<td>ACC_column_26 = -1</td>
</tr>
<tr>
<td></td>
<td>ACC_column_25 – 4 bits</td>
<td></td>
<td>ACC_column_25 = -1</td>
</tr>
<tr>
<td>0x242F</td>
<td>ACC_column_32 – 4 bits</td>
<td>0xBBDD</td>
<td>ACC_column_32 = -5</td>
</tr>
<tr>
<td></td>
<td>ACC_column_31 – 4 bits</td>
<td></td>
<td>ACC_column_31 = -5</td>
</tr>
<tr>
<td></td>
<td>ACC_column_30 – 4 bits</td>
<td></td>
<td>ACC_column_30 = -3</td>
</tr>
<tr>
<td></td>
<td>ACC_column_29 – 4 bits</td>
<td></td>
<td>ACC_column_29 = -3</td>
</tr>
<tr>
<td>0x2430</td>
<td>PTAT_25</td>
<td>0x18EF</td>
<td>GAIN = 6383</td>
</tr>
<tr>
<td>0x2431</td>
<td>Kv_PTAT - 6 bits</td>
<td>0x2FF1</td>
<td>PTAT_25 = 12273</td>
</tr>
<tr>
<td>0x2432</td>
<td>Kt_PTAT - 10 bits</td>
<td>0x5952</td>
<td>Kv_PTAT = 0.005371094</td>
</tr>
<tr>
<td></td>
<td>Kt_PTAT = 42.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x2433</td>
<td>K_Vdd - 8 bits</td>
<td>0x9D68</td>
<td>K_Vdd = -3168</td>
</tr>
<tr>
<td></td>
<td>Vdd_25 - 8 bits</td>
<td></td>
<td>Vdd_25 = -13056</td>
</tr>
<tr>
<td>0x2434</td>
<td>Kv_avg_RO_CO – 4 bits</td>
<td>0x5454</td>
<td>Kv_avg_RO_CO = 5</td>
</tr>
<tr>
<td></td>
<td>Kv_avg_RE_CO – 4 bits</td>
<td></td>
<td>Kv_avg_RE_CO = 4</td>
</tr>
<tr>
<td></td>
<td>Kv_avg_RO_CE – 4 bits</td>
<td></td>
<td>Kv_avg_RO_CE = 5</td>
</tr>
<tr>
<td></td>
<td>Kv_avg_RE_CE – 4 bits</td>
<td></td>
<td>Kv_avg_RE_CE = 4</td>
</tr>
<tr>
<td>0x2435</td>
<td>IL_CHESS_C3 – 5 bits</td>
<td>0x0994</td>
<td>IL_CHESS_C3 = 0.125</td>
</tr>
<tr>
<td></td>
<td>IL_CHESS_C2 – 5 bits</td>
<td></td>
<td>IL_CHESS_C2 = 3</td>
</tr>
<tr>
<td></td>
<td>IL_CHESS_C1 – 6 bits</td>
<td></td>
<td>IL_CHESS_C1 = 1.25</td>
</tr>
<tr>
<td>0x2436</td>
<td>Kta_avg_RO_CO – 8 bits</td>
<td>0x6956</td>
<td>Kta_avg_RO_CO = 105</td>
</tr>
<tr>
<td></td>
<td>Kta_avg_RE_CO – 8 bits</td>
<td></td>
<td>Kta_avg_RE_CO = 86</td>
</tr>
<tr>
<td>0x2437</td>
<td>Kta_avg_RO_CE – 8 bits</td>
<td>0x5354</td>
<td>Kta_avg_RO_CE = 83</td>
</tr>
<tr>
<td></td>
<td>Kta_avg_RE_CE – 8 bits</td>
<td></td>
<td>Kta_avg_RE_CE = 84</td>
</tr>
<tr>
<td>0x2438</td>
<td>Resolution_control_cal – 2 bits</td>
<td>0x2363</td>
<td>Resolution_control_cal = 2</td>
</tr>
<tr>
<td></td>
<td>Kv_scale – 4 bits</td>
<td></td>
<td>Kv_scale = 3</td>
</tr>
<tr>
<td></td>
<td>Kta_scale_1 – 4 bits</td>
<td></td>
<td>Kta_scale_1 = 14</td>
</tr>
<tr>
<td></td>
<td>Kta_scale_1 – 4 bits</td>
<td></td>
<td>Kta_scale_1 = 3</td>
</tr>
<tr>
<td>0x2439</td>
<td>CP_SP_1/SP_0_ratio – 6 bits</td>
<td>0xE446</td>
<td>CP_SP_1/SP_0_ratio = -0.0546875</td>
</tr>
</tbody>
</table>
Table 12 Calculation example calibration data

<table>
<thead>
<tr>
<th>Offset_CP_SP_0 – 10 bits</th>
<th>CP_off_delta (SP_1 - SP_0) – 6 bits</th>
<th>0xFFB5</th>
<th>CP_off_delta (SP_1 - SP_0) = -2 Offset_CP_SP_0 = -75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha_CP_SP_0 – 10 bits</td>
<td>0x243A</td>
<td></td>
<td>Alpha_CP_SP_0 = 4.0745362639427E-09</td>
</tr>
<tr>
<td>0x243B</td>
<td>Kc_CP – 8 bits</td>
<td>0x044B</td>
<td>Kc_CP = 0.5</td>
</tr>
<tr>
<td></td>
<td>Kta_CP – 8 bits</td>
<td></td>
<td>Kta_CP = 0.00457763671875</td>
</tr>
<tr>
<td>0x243C</td>
<td>KsTa – 8 bits</td>
<td>0xF020</td>
<td>KsTa = -0.001953125</td>
</tr>
<tr>
<td></td>
<td>TGC – 8 bits</td>
<td></td>
<td>TGC = 1</td>
</tr>
<tr>
<td>0x243D</td>
<td>KsTo2 (0°C…CT3°C) – 8 bits</td>
<td>0x9797</td>
<td>KsTo2 (0°C…CT3°C) = -0.0008010864</td>
</tr>
<tr>
<td></td>
<td>KsTo1 (<0°C) – 8 bits</td>
<td></td>
<td>KsTo1 (<0°C) = -0.0008010864</td>
</tr>
<tr>
<td>0x243E</td>
<td>KsTo4 (CT4°C…) – 8 bits</td>
<td>0x9797</td>
<td>KsTo4 (CT4°C…) = -0.0008010864</td>
</tr>
<tr>
<td></td>
<td>KsTo3 (CT3°C…CT4°C) – 8 bits</td>
<td></td>
<td>KsTo3 (CT3°C…CT4°C) = -0.0008010864</td>
</tr>
<tr>
<td>0x243F</td>
<td>Step – 2 bits</td>
<td>0x2889</td>
<td>Step = 20°C</td>
</tr>
<tr>
<td></td>
<td>CT4 – 4 bits</td>
<td></td>
<td>CT4 = 320°C</td>
</tr>
<tr>
<td></td>
<td>CT3 – 4 bits</td>
<td></td>
<td>CT3 = 160°C</td>
</tr>
<tr>
<td></td>
<td>KsTo_scale – 4 bits</td>
<td></td>
<td>KsTo_scale = 17</td>
</tr>
</tbody>
</table>
11.2.2. Temperature calculation

After the parameters restore the temperature calculation is done using following calculation flow (assuming that the EEPROM data are already extracted):

- Supply voltage value calculation (common for all pixels) - 11.2.2.2
- Ambient temperature calculation (common for all pixels) - 11.2.2.3
- Gain compensation - 11.2.2.5.1
- IR data compensation – offset, VDD and Ta - 11.2.2.5.3
- IR data Emissivity compensation - 11.2.2.5.4
- IR data gradient compensation - 11.2.2.7
- Normalizing to sensitivity - 11.2.2.8
- Calculating To - 11.2.2.9
- Image (data) processing

For this example we calculate the temperature of pixel (12, 16) i.e. row=12 and the column=16.

Values marked with green are extracted from device EEPROM

Values marked with grey are final parameter values or are values to be used for next calculations

11.2.2.1. Resolution restore

The device is calibrated with default resolution setting = 2 (corresponding to ADC resolution set to 18bit see Fig 11) i.e. if the one choose to change the ADC resolution setting to a different one a correction of the data must be done. First we must restore the resolution at which the device has been calibrated which is stored at EEPROM 0x2438.

\[
Resolution_{corr} = \frac{2^{Resolution_{EE}}}{2^{Resolution_{REG}}}
\]

Where:

\[
Resolution_{EE} = \frac{0x0000 \text{ & } 0x3000}{2^{12}} = \frac{0x0000}{2^{12}} = 0x0002 = 2 \text{ (unsigned)}
\]

\[
Resolution_{REG} = \frac{\text{RAM}[0x0000] \text{ & } 0x0C00}{2^{10}} = \frac{0x1901 \text{ & } 0x0C00}{2^{10}} = 0x0002 = 2 \text{ (unsigned)}
\]
In case the ADC resolution is changed the one must multiply the Resolution corr coefficient with the RAM data for VDD only. Please note that the data for Vbe, PTAT and IR pixels (including CP) must not be changed.

11.2.2.2. Supply voltage value calculation (common for all pixels)

\[V_{dd} = \frac{\text{Resolution corr} \times \text{RAM}[0x072A] - V_{dd25}}{K_{Vdd}} + V_{dd0} \]

Where: Constants calculation of the EEPROM stored values (can be done just once after POR)

\[K_{Vdd} = \frac{\text{EE}[0x2432] & 0xFF00}{2^8} = \frac{\text{EE}[0x2431] & 0x00FF}{2^8} = 0x009D = 157 \]

If \(157 > 127 \rightarrow K_{Vdd} = 157 - 256 = -99 \)

\[K_{Vdd} = K_{Vdd} \times 2^5 = -99 \times 32 = -3168 \]

\[V_{dd25} = \frac{\text{EE}[0x2431] & 0x00FF = 0x906b & 0x00FF = 0x0068 = 104} \]

\[V_{dd25} = (V_{dd25} - 256) \times 2^5 - 2^{13} = -152 \times 32 - 8192 = -13056 \]

VDD calculations:

\[V_{dd} = \frac{1 + 13115 - (-13056)}{-3168} + 3.3 = \frac{-59}{-3168} + 3.3 \approx 0.0186 + 3.3 \approx 3.319V \]

11.2.2.3. Ambient temperature calculation (common for all pixels)

\[T_a = \frac{V_{\text{PTAT out}} - V_{\text{PTAT 25}}}{K_{\text{PTAT}}} + 25, ^\circ C \]

Where:

\[K_{VPTAT} = \frac{\text{EE}[0x2432] & 0xFC00}{2^{16}} = \frac{\text{EE}[0x2431] & 0xFC00}{2^{16}} = 0x0016 = 22 \]

If \(22 < 31 \rightarrow K_{VPTAT} = 22 \)

\[K_{VPTAT} = \frac{K_{VPTAT}}{2^{12}} = \frac{22}{4096} = 0.005371094 \]

\[K_{TPTAT} = \frac{\text{EE}[0x2432] & 0x03FF = 0x5952 & 0x03FF = 0x0152 = 338} \]

If \(338 < 511 \rightarrow K_{TPTAT} = 1 \)

\[K_{TPTAT} = \frac{K_{TPTAT}}{2^3} = \frac{338}{8} = 42.25 \]

\[\Delta V = \frac{\text{RAM}[0x072A] - V_{dd25}}{K_{Vdd}} \]
11.2.2.4. Gain parameter calculation (common for all pixels)

\(K_{gain} = \frac{GAIN}{RAM[0x070A]} \)

\[RAM[0x070A] = 0x1881 = 6273 \]

- If \(6273 < 32767 \) \(\rightarrow \) \(RAM[0x070A] = 6273 \)

\[GAIN = \frac{EE[0x241B] + 0xF000}{0x4000} = 0x1030 = 6383 \]

- If \(6383 < 32767 \) \(\rightarrow \) \(GAIN = 6383 \)

\[K_{gain} = \frac{6383}{6273} = 1.01753546947234 \]
Please note that this value is updated every frame and it is the same for all pixels including CP regardless the subpage number

11.2.2.5. Pixel data calculations

The pixel addressing is following the pattern as described in Reading pattern shown in Fig 5:

11.2.2.5.1. Gain compensation

The first step of the data processing on raw IR data is always the gain compensation, regardless of pixel or subpage number.

\[p_{x gain}(12, 16) = RAM[pixel data] \times K_{gain} = RAM[0x056F] \times K_{gain} \]

\[RAM[0x056F] = 0x0261 = 609 \]

If 609 < 32767 \(\rightarrow \) \(RAM[0x056F] = 609 \)

\[p_{x gain}(12, 16) = 609 \times 1.01753546947234 = 619.679100908656 \]

11.2.2.5.2. Offset calculation

\[p_{x offset}(12, 16) = \text{offset}_{average} + \text{OCC}_{row12} \times 2^{\text{OCC scale}_{row}} + \text{OCC}_{column16} \times 2^{\text{OCC scale}_{column}} + \text{offset}(12, 16) \times 2^{\text{OCC scale}_{remainder}} \]

\[\text{offset}_{average} = [\text{EEPROM} \times 0x24141] \times 0x00F00 = 65467 \]

If 65467 > 32767 \(\rightarrow \) \(\text{offset}_{average} = 65467 - 65536 = -69 \)

As the row=12, we select EEPROM cell 0x2414 (± OCC_rows_12...08 (4 x 4bit)) and extract the four most significant bits corresponding to parameter OCC_rows_12. If another row number is selected, the corresponding OCC parameter must be selected.

\[\text{OCC}_{row12} = \frac{\text{EEPROM} \times 0x2414}{2^{12}} \& 0xF000 = \frac{0x00F00}{2^{12}} = 0x000F = 15 \]

If 15 > 7 \(\rightarrow \) \(\text{OCC}_{row12} = 15 - 16 = -1 \)

\[\text{OCC scale}_{row} = \frac{\text{EEPROM} \times 0x2414}{2^{8}} \& 0xF000 = \frac{0x00F00}{2^{8}} = 0x0002 = 2 \]

Please note that OCC_scale_row is a common parameter for all OCC_{rowi} calculation

As the column=16, we select EEPROM cell 0x2425 (± OCC_column_16...13 (4 x 4bit)) and extract the four most significant bits corresponding to parameter OCC_columns_16. If another column number is selected, the corresponding OCC parameter must be selected.

\[\text{OCC}_{column16} = \frac{\text{EEPROM} \times 0x2425}{2^{12}} \& 0xF000 = \frac{0x00F00}{2^{12}} = 0x000E = 14 \]

If 14 > 7 \(\rightarrow \) \(\text{OCC}_{column16} = 14 - 16 = -2 \)

\[\text{OCC scale}_{column} = \frac{\text{EEPROM} \times 0x2425}{2^{4}} \& 0xF000 = \frac{0x00F00}{2^{4}} = 0x0001 = 1 \]

Please note that OCC_scale_column is a common parameter for all OCC_{columnj} calculation
offset(12,16) = \(\frac{0x0F00 \& 0xPC00}{2^{10}} = 0x0002 \)

if \(2 < 31 \) \(\Rightarrow \) offset(12,16) = 2

\(OCC_{\text{scale, remnant}} = \frac{E[0x2410] \& 0x000F}{0x421F} \& 0x000F = 0x0000 = 0 \)

\(pix_{\text{OS, ref}}(12,16) = -69 + (-1) \times 2^2 + (-2) \times 2^1 + 2 \times 2^0 = -69 - 4 - 4 + 2 = -75 \)

11.2.2.5.3. IR data compensation – offset, VDD and Ta

\[pix_{\text{OS}}(12,16) = pix_{\text{gain}}(12,16) - pix_{\text{OS, ref}} \times \left(1 + K_{Ta(12,16)} \times (T_a - T_{ao}) \right) \times \left(1 + K_{V(12,16)} \times (V_{da} - V_{ad, Va}) \right) \]

\[K_{Ta(12,16)} = \frac{K_{Ta, RC, EE} \times K_{Ta(12,16), EE \& 0x000E} \times 2 \times K_{Ta, scale, 2}}{2 \times K_{Ta, scale, 1}} \]

Where:

\[K_{Ta, RC, EE} = \frac{E[0x2410] \& 0x000E}{2} = 0x0000 = 0 \]

If \(0 < 3 \) \(\Rightarrow \) \(K_{Ta(12,16), EE} = 0 \)

As row and column numbers are even then

\[K_{Ta, RC, EE} = \frac{E[0x2410] \& 0x00FF}{2^4} & 0x00FF = 0x5354 \& 0x00FF = 0x0054 = 4 \]

\[K_{Ta, scale, 1} = \frac{E[0x2410] \& 0x00FF}{2^4} + 8 = \frac{0x5354 \& 0x00FF}{2^4} + 8 = 0x0006 + 8 = 6 + 8 = 14 \]

\[K_{Ta, scale, 2} = \frac{E[0x2410] \& 0x00FF}{2^4} + 8 = \frac{0x5354 \& 0x00FF}{2^4} + 8 = 0x0003 = 3 \]

\[K_{Ta(12,16)} = \frac{84 + 0 \times 2^3}{2^4} = \frac{84}{16384} = 0.005126953125 \]

As row and column numbers are even:

\[K_{V(l,j)} = \frac{E[0x2410]}{2} \& 0x000F & 0x000F = 0x71B4 \& 0x000F = 0x0004 = 4 \]

If \(K_{V(l,j)} < 7 \) \(\Rightarrow \) \(K_{V(l,j)} = 4 \)

\[K_{V(12,16)} = \frac{K_{V(l,j)}}{2^{K_{V, scale}}} \text{ (signed)} \]

Where:

\[K_{V, scale} = \frac{E[0x2410] \& 0x0F00}{2^8} = \frac{0x71B4 \& 0x0F00}{2^8} = 0x0003 = 3 \]

\[K_{V(12,16)} = \frac{K_{V(l,j)}}{2^{K_{V, scale}}} = \frac{4}{2^3} = \frac{4}{8} = 0.5 \]

\[pix_{OS}(12,16) = 619.679100908656 - (-75) \times \left(1 + 0.005126953125 \times (39.184 - 25) \right) \times \left(1 + 0.5 \times (3.319 - 3.3) \right) \]

\[pix_{OS}(12,16) = 700.882495690877 \]
11.2.2.5.4. IR data Emissivity compensation

Emissivity compensation: For the example we assume Emissivity = 1. Note that the Emissivity coefficient is user defined and it is not stored in the device EEPROM

\[
V_{IR(12.16)}^{\text{Emissivity, compensated}} = \frac{pix_{IR(12.16)}}{\epsilon} = \frac{700.882495690877}{1} = 700.882495690877
\]

11.2.2.6. CP data calculations

11.2.2.6.1. Compensating the GAIN of CP pixel

\[\text{pix}_{\text{gain, CP, SP0}} = \text{RAM}[0x0708] \cdot K_{\text{gain}}\]

\[
\text{RAM}[0x0708] = 0xFFCA = 65482
\]

\[
\text{if } 65482 > 32767 \rightarrow \text{RAM}[0x0708] = 65482 - 65536 = -54
\]

\[\text{pix}_{\text{gain, CP, SP0}} = -54 \cdot 1.001753546947234 = -54.9469153515065\]

\[\text{pix}_{\text{gain, CP, SP1}} = \text{RAM}[0x0728] \cdot K_{\text{gain}}\]

\[
\text{RAM}[0x0728] = 0xFFCB = 65480
\]

\[
\text{if } 65480 > 32767 \rightarrow \text{RAM}[0x0728] = 65480 - 65536 = -56
\]

\[\text{pix}_{\text{gain, CP, SP1}} = -56 \cdot 1.001753546947234 = -56.9819862904511\]

NOTE: In order to limit the noise in the final To calculation it is advisable to filter the CP readings at this point of calculation. A good practice would be to apply a Moving Average Filter with length of 16 or higher.

11.2.2.6.2. Compensating offset, Ta and VDD of CP pixel

\[\text{pix}_{\text{OS, CP, SP}} = \text{pix}_{\text{gain, CP, SP}} - \text{Off, CP, subpage, 0} \cdot \left(1 + K_{\text{Ta, CP}} \cdot (T_a - T_{av}) \right) \cdot \left(1 + K_{\text{V, CP}} \cdot (V_{dd} - V_{ddv0}) \right)\]

The value of the offset for compensating pixel for the subpage 1 depends on the reading pattern. In case the chess reading pattern mode is used following formula is to be applied:

\[\text{pix}_{\text{OS, CP, SP1}} = \text{pix}_{\text{gain, CP, SP1}} - \text{Off, CP, subpage, 1} \cdot \left(1 + K_{\text{Ta, CP}} \cdot (T_a - T_{av}) \right) \cdot \left(1 + K_{\text{V, CP}} \cdot (V_{dd} - V_{ddv0}) \right)\]

In case of interleaved mode is used following formula is to be applied:

\[\text{pix}_{\text{OS, CP, SP1}} = \text{pix}_{\text{gain, CP, SP1}} - \text{Off, CP, subpage, 1} + H_{\text{CHESS, CP}} \cdot \left(1 + K_{\text{Ta, CP}} \cdot (T_a - T_{av}) \right) \cdot \left(1 + K_{\text{V, CP}} \cdot (V_{dd} - V_{ddv0}) \right)\]

The correction parameter (highlighted in yellow) is extracted in **Error! Reference source not found.**

Where:

\[\text{Off, CP, subpage, 0} = \text{RAM}[0x2A31] \text{ & } 0x03FF = 0xFFB5 \text{ & } 0x03FF = 0x03B5 = 949\]

\[
\text{if } 949 > 511 \rightarrow \text{Off, CP, subpage, 0} = 949 - 1024 = -75
\]

\[\text{Off, CP, subpage, 1} = \text{Off, CP, subpage, 0} + \text{Off, CP, subpage, 1, delta}\]
Where:

\[Off_{CP_{subpage,1 _delta}} = \frac{0x00FF \& \ 0x0000 \ {\text{to}} \ {\text{210}}} {210} = 0x003E = 0 \]

If \(62 > 31 \), \(Off_{CP_{subpage,1 _delta}} = 62 - 64 = -2 \)

\[Off_{CP_{subpage,1}} = -75 + (-2) = -77 \]

\[K_{TaCP} = \frac{K_{TaCP, EE}} {2K_{scale,1}} = \frac{75} {214} = 0.00457763671875 \]

Where:

\[K_{TaScale,1} = \frac{64[0x0243B] \& \ 0x00FF} {2^8} + 8 = 14 \] (unsigned) (the same one as for the \(K_{Ta(i,j)} \) coefficients)

\[K_{TaCP, EE} = \frac{64[0x0442] \& \ 0x00FF} {2^8} = 0x0044 \& \ 0x00FF = 0x004B = 7 \]

If \(75 < 127 \), \(K_{TaCP, EE} = 75 \)

\[K_{CP} = \frac{K_{CP, EE}} {2K_{scale}} = \frac{4} {2^3} = 0.5 \]

\[K_{scale} = \frac{64[0x00F0] \& \ 0x00FF} {2^8} = \frac{64[0x00F0] \& \ 0x00FF} {2^8} = 0x0003 = \frac{3} {3} \] (unsigned) (the same one as for the \(K_{V(i,j)} \) coefficients)

Where:

\[K_{CP, EE} = \frac{64[0x00F0] \& \ 0x0FF0} {2^8} = \frac{64[0x00F0] \& \ 0x0FF0} {2^8} = 0x0004 = 4 \]

If \(4 < 127 \), \(K_{CP, EE} = 4 \)

\[pix_{OS, CP, SPO} = -54.9469153515065 \times (-75) \times (1 + 0.00457763671875 \times (39.184 - 25) \times (1 + 0.5 \times (3.319 - 3.3)) \]

\[pix_{OS, CP, SPO} = 25.6666575059956 \]

\[pix_{OS, CP, SPI1} = -56.9819862904511 \times (-77) \times (1 + 0.00457763671875 \times (39.184 - 25) \times (1 + 0.5 \times (3.319 - 3.3)) \]

\[pix_{OS, CP, SPI1} = 21.6315865670509 \]

11.2.2.7. IR data gradient compensation

As stated in “Reading patterns” the device can work in two different readings modes (Chess pattern – the default one and IL (Interleave mode)).

Depending on the device measurement mode and \(pixel_{number} = 1 \ldots 768 \) we can define a pattern which will help us to automatically switch between both subpages.

- In case of **Chess pattern** is selected please use following expression:

\[
Pattern = \left(\text{int} \left(\frac{pixel_{number} - 1}{32} \right) - \text{int} \left(\frac{pixel_{number} - 1}{32} \right) \times 2 \right) \text{xor} \left(\text{int} \left(\frac{pixel_{number} - 1}{2} \right) \times 2 \right)
\]

- In case of **Interleaved pattern** please use following expression:
Where the \(\text{int} \) function is giving the truncated whole number without fractional component of the result.

Where \(\text{xor} \) is exclusive or or exclusive disjunction is a logical operation that outputs true only when inputs differ. The truth table is as follows:

<table>
<thead>
<tr>
<th>Input 1</th>
<th>Input 2</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\(\text{Table 13 XOR truth table} \)

Example: Let’s assume that the \(\text{pixel}_{\text{number}} = 368 \) (12x16)

If we are in chess mode:

\[
\text{Pattern} = \left(\text{int} \left(\frac{368 - 1}{32} \right) \right) \cdot 2 \text{xor} \left(\text{int} \left(\frac{368 - 1}{2} \right) \right) \cdot 2
\]

\[
\text{Pattern} = \left(\text{int}(11.46875) \right) \cdot 2 \text{xor}(367 - \text{int}(183.5) \cdot 2)
\]

\[
\text{Pattern} = (11 - \text{int}(\frac{11}{2}) \cdot 2) \text{xor}(367 - 183 \cdot 2) = (11 - 5 \cdot 2) \text{xor}(1) = (1) \text{xor}(1) = 0
\]

If we are in IL mode:

\[
\text{Pattern} = \left(\text{int} \left(\frac{368 - 1}{32} \right) \right) \cdot 2 \text{xor} \left(\text{int} \left(\frac{368 - 1}{2} \right) \right) \cdot 2
\]

\[
\text{Pattern} = (11 - \text{int}(\frac{11}{2}) \cdot 2) = (11 - 5 \cdot 2) = 1
\]

\[
\text{\textit{In}}_{\text{IR}(12,16)}^{\text{COMPENSATED}} = \text{\textit{In}}_{\text{IR}(12,16)}^{\text{EMISSIVITY,CMPENSATED}} - \text{TGC} \cdot \left((1 - \text{Pattern}) \cdot \text{pix}_{\text{OS,CP,SP0}} + \text{Pattern} \cdot \text{pix}_{\text{OS,CP,SP1}} \right)
\]

\[
\text{TGC} = \frac{\text{TGC}_{EE}}{2^5} = \frac{32}{32} = 1
\]

Where:

\[
\text{TGC}_{EE} = \left[\text{0x743C} \right] \& \text{0x00FF} = \text{0xF020} \& \text{0x00FF} = \text{0x0020} = 12
\]

If \(32 < 127 \rightarrow \text{TGC}_{EE} = 32 \)

\[
\text{\textit{In}}_{\text{IR}(12,16)}^{\text{COMPENSATED}} = 700.882495690877 - 1 \cdot 21.6315865670509 = 679.250909123826
\]
11.2.2.8. Normalizing to sensitivity

\[\alpha_{\text{comp}(12,16)} = \left(\alpha_{(12,16)} - TGC \times \left((1 - \text{Pattern}) \times \alpha_{\text{CP,subpage}_0} + \text{Pattern} \times \alpha_{\text{CP,subpage}_1} \right) \right) \times \left(1 + K_{STa} \times (T_a - T_{\text{ref}}) \right) \]

\[\alpha_{\text{CP,subpage}_0} = \frac{\text{value read} \& \ 0x0FFFF}{2^{\text{scale}_CP}} = \frac{\text{value read} \& \ 0x0FFFF}{2^{34}} = \frac{0x0096}{2^{34}} = 4.07453626394272E - 09 \]

\[\alpha_{\text{CP,subpage}_1} = \alpha_{\text{CP,subpage}_0} \times \left(1 + \frac{CP_{P1}P0_{\text{ratio}}}{2^7} \right) = 4.07453626394272E - 09 \times \left(1 + \frac{2^7}{2^7} \right) \]

\[\alpha_{\text{CP,subpage}_1} = 3.85171006200835E - 09 \]

Where:

\[\alpha_{\text{scale}_CP} = \frac{\text{value read} \& \ 0x0FFFF}{2^{n}} + 27 = \frac{\text{value read} \& \ 0x0FFFF}{2^{12}} + 27 = 0x0007 + 27 = 34 \]

\[CP_{P1}P0_{\text{ratio}} = \frac{\text{value read} \& \ 0x0FC00}{2^{16}} = \frac{\text{value read} \& \ 0x0FC00}{2^{10}} = 0x0039 = 57 \]

If \(57 > 31 \Rightarrow CP_{P1}P0_{\text{ratio}} = 57 - 64 = -7 \)

\[K_{STa} = \frac{K_{STa,EE}}{2^{13}} = \frac{-16}{2^{13}} = -0.001953125 \]

Where:

\[K_{STa,EE} = \frac{\text{value read} \& \ 0x0FFFF}{2^{n}} = \frac{\text{value read} \& \ 0x0FFFF}{2^{16}} = 0x00FF0 = 240 \text{ (common for all pixels)} \]

If \(240 > 127 \Rightarrow K_{STa,EE} = 240 - 256 = -16 \)

\[\alpha_{(12,16)} = \frac{\alpha_{\text{reference}} + ACC_{row12} \times ACC_{scale_{row}} + ACC_{column16} \times ACC_{scale_{column}} + \alpha_{pixel(12,16)} \times ACC_{scale_{remnant}}}{2^{\text{scale}} \times ACC_{scale_{remnant}}} \]

Where:

\[\alpha_{\text{reference}} = \frac{\text{value read} \& \ 0x24210}{2^{8}} = \frac{\text{value read} \& \ 0x24210}{2^{12}} = 1210A \]

\[\alpha_{\text{scale}} = \frac{\text{value read} \& \ 0x0FFFF}{2^{12}} + 30 = \frac{\text{value read} \& \ 0x0FFFF}{2^{12}} + 30 = 0x0007 + 30 = 39 \]

\[ACC_{row12} = \frac{\text{value read} \& \ 0x0FFFF}{2^{12}} = \frac{\text{value read} \& \ 0x0FFFF}{2^{12}} = 0x0003 = 3 \]

If \(3 < 7 \Rightarrow ACC_{row12} = 3 \)

\[ACC_{scale_{row}} = \frac{\text{value read} \& \ 0x0FFFF}{2^{8}} = \frac{\text{value read} \& \ 0x0FFFF}{2^{10}} = 0x0009 = 9 \]

\[ACC_{column16} = \frac{\text{value read} \& \ 0x0FFFF}{2^{12}} = \frac{\text{value read} \& \ 0x0FFFF}{2^{12}} = 0x0003 = 3 \]

If \(3 > 7 \Rightarrow ACC_{column16} = 3 \)

\[ACC_{scale_{column}} = \frac{\text{value read} \& \ 0x0FFFF}{2^{6}} = \frac{\text{value read} \& \ 0x0FFFF}{2^{10}} = 0x000A = 10 \]

\[\alpha_{pixel(12,16)} = \frac{\text{value read} \& \ 0x03F0}{2^{4}} = \frac{\text{value read} \& \ 0x03F0}{2^{4}} = 0x000A = 10 \]

If \(10 < 31 \Rightarrow \alpha_{pixel(12,16)} = 10 \)
\[
\begin{align*}
\text{ACC}_{\text{scale reminder}} &= \frac{FE[0x2440]}{F} & 0xF000 = 0x79A6 & 0x0000 = 0x0006 = 1 \\
\alpha_{(12,16)} &= \frac{12100+3\cdot2^3+3+2^4+10+2^6}{2^{37}} = 1.26223312690854E - 07 \\
\alpha_{\text{comp}(12,16)} &= \left(\alpha_{(12,16)} - \text{TGC} \cdot \left((1 - \text{Pattern}) \cdot \alpha_{\text{CP,subpage0}} + \text{Pattern} \cdot \alpha_{\text{CP,subpage,1}} \right) \cdot \left(1 + K_{\text{ST2}} \cdot (T_a - T_{a0}) \right) \right)
\end{align*}
\]

\[
\begin{align*}
\alpha_{\text{comp}(12,16)} &= \left(1.26223312690854E - 07 - 1 \cdot \left((1 - 0) \cdot 4.07453626394272E - 09 + 0 \cdot 3.85171006200835E - 09 \right) \right) \cdot \left(1 + -0.001953125 \cdot (39.184 - 25) \right) \\
\alpha_{\text{comp}(12,16)} &= 1.1876487360496E - 07
\end{align*}
\]

11.2.2.9. Calculating To for basic temperature range (0°C...CT3 °C)

\[
K_{ST2} = \frac{K_{ST2,EE}}{2^{KST2,SCALE}} = \frac{-105}{2^{217}} = -0.00080108645278125
\]

Where:
\[
K_{ST2,EE} = \frac{\text{KST2,EE}}{2^8} & 0xFF00 = 0x0097 = 151
\]

If 151 > 127 \(\rightarrow K_{ST2,EE} = 151 - 256 = -105 \)

\[
K_{ST2,SCALE} = \frac{F[0x2440]}{2^8} & 0x0000 + 8 = 0x32091 & 0x0000 + 8 = 0x0009 + 8 = 11
\]

As the IR signal received by the sensor has two components:
1. IR signal emitted by the object
2. IR signal reflected from the object (the source of this signal is surrounding environment of the sensor)

In order to compensate correctly for the emissivity and achieve best accuracy we need to know the surrounding temperature which is responsible for the second component of the IR signal namely the reflected part \(T_r \). In case this \(T_r \) temperature is not available and cannot be provided it might be replaced by \(T_r \approx T_a - 8 \).

Let’s assume \(T_r = 31^\circ \text{C} \).

\[
\begin{align*}
T_{aK4} &= (T_a + 273.15)^4 = (39.184 + 273.15)^4 = 312.334^4 = 9516495632.56 \\
T_{rK4} &= (T_r + 273.15)^4 = (31 + 273.15)^4 = 304.15^4 = 8557586214.66 \\
T_{a-r} &= T_{rK4} - T_{aK4} = 8557586214.66 - 8516495632.56 = 9516495632.56 \\
S_{x(12,16)} &= K_{ST2} \cdot \sqrt{\alpha_{\text{comp}(12,16)}^3 \cdot V_{IR(12,16),\text{COMPENSATED}} + \alpha_{\text{comp}(12,16)}^4 \cdot T_{a-r}} \\
S_{x(12,16)} &= -0.00080108645278125 \cdot \sqrt{(1.1876487360496E - 07)^3 + 679.250909123826 + (1.1876487360496E - 07)^4 \cdot 9516495632.56} \approx 3.34259382357449E - 08 \\
S_{x(12,16)} &= -3.34259382357449E - 08
\end{align*}
\]

\[
\begin{align*}
T_{O(12,16)} &= \sqrt{\left[\frac{V_{IR(12,16),\text{COMPENSATED}}}{\alpha_{\text{comp}(12,16)} \cdot (1 - K_{ST2} \cdot 273.15) + S_{x(12,16)}} \right] + T_{a-r} - 273.15} \\
T_{O(12,16)} &= \sqrt{679.250909123826 + (1.1876487360496E - 07)^4 \cdot 9516495632.56 - 273.15} \approx 80.36 \text{ °C}
\end{align*}
\]
11.2.2.9.1. Calculations for extended temperature ranges

In order to extend the object temperature range and get the best possible accuracy an additional calculation cycle is needed. We can identify 4 object temperature ranges (each temperature range has its own so called Corner Temperature – CT which is the temperature at which the range starts):

- Object temperature range 1 = -40°C ... 0°C (Corner temperature for this range is -40°C and cannot be changed)
- Object temperature range 2 = 0°C ... CT3°C (Corner temperature for this range is 0°C and cannot be changed)
- Object temperature range 3 = CT3°C ... CT4°C
- Object temperature range 4 = CT4°C ...

In order to be able to carry out temperature calculation for the ranges outside of temperature range 2 (To = 0°C...CT3) an additional parameters are needed and must be extracted from the device EEPROM. Those parameters are:

- So called corner temperature (CTx) i.e. the value of temperature at the beginning of the range. Please note that the corner temperatures for range 1 is fixed to -40°C and corner temperatures for range 2 is fixed to 0°C while CT3 and CT4 are adjustable
- Sensitivity slope for each range – KsTo
- \(T_{D(x,y)} \) calculated in 11.2.2.9

11.2.2.9.1.1. Restoring corner temperatures

The information regarding corner temperatures is stored into device EEPROM and is restored as follows:

\[
\begin{align*}
\text{Step} &= \frac{[0x243D] & 0x0000}{2^{12}} \times 10 = \frac{[0x243D] & 0x0000}{2^{12}} \times 10 = 0x0002 \times 10 = \text{20°C} \\
CT3 &= \frac{[0x243D] & 0x000F}{2^4} \times \text{Step} = \frac{[0x243D] & 0x0000}{2^{12}} \times 20 = 0x0008 \times 20 = \text{20°C} \\
CT4 &= \frac{[0x243D] & 0x00F0}{2^8} \times \text{Step} + CT3 = \frac{[0x243D] & 0x0000}{2^{12}} \times 20 + 160 = 0x0008 \times 20 + 160 = \text{20°C + 160°C} = \text{320°C}
\end{align*}
\]

Or we can construct the temperatures for the ranges as follows:

\[
\begin{align*}
CT1= -40°C & < \text{Range 1} > \text{CT2}=0°C & < \text{Range 2} > \text{CT3}=160°C & < \text{Range 3} > \text{CT4}=320°C & < \text{Range 4}
\end{align*}
\]

11.2.2.9.1.2. Restoring the sensitivity slope for each range

\(K_{STo} \) scale = 17 has been extracted in 11.1.10

\[
K_{STo1} = \frac{K_{STo1,EE}}{2^{K_{STo} \text{scale}}} = \frac{-105}{2^{17}} = \frac{-0.00080108642578125}{2}\text{signed} = -0.00080108642578125
\]

Where:

\[
K_{STo1,EE} = EE[0x243D] & 0x00FF = [0x243D] & 0x00FF = 0x0097 = 151\text{ (signed)}
\]

If \(K_{STo1,EE} > 127 \rightarrow K_{STo1,EE} = K_{STo1,EE} - 256 = 151 - 256 = -105\)

\[
K_{STo3} = \frac{K_{STo3,EE}}{2^{K_{STo} \text{scale}}} = \frac{-105}{2^{17}} = \frac{-0.00080108642578125}{2}\text{signed} = -0.00080108642578125
\]

Where:

\[
K_{STo3,EE} = EE[0x243E] & 0x00FF = [0x243E] & 0x00FF = 0x0097 = 151\text{ (signed)}
\]
If \(K_{sT03, EE} > 127 \), \(K_{sT03, EE} = K_{sT03, EE} - 256 = 151 - 256 = -105 \)

\[
K_{sT04} = \frac{K_{sT04, EE}}{2^{K_sT04_scale}} = \frac{-105}{2^{17}} = -0.00080108642578125
\]

Where:
\[
K_{sT04, EE} = \frac{EE[0x243E] \& 0x00FF}{2^8} = \frac{0x202 & 0x00FF}{2^8} = 0x0097 = -91_{\text{(signed)}},
\]

If \(K_{sT04, EE} > 127 \), \(K_{sT04, EE} = K_{sT04, EE} - 256 = 151 - 256 = -105 \)

Now we can calculate sensitivity correction coefficients for each temperature range:

\[
\alpha_{corr_{range1}} = \frac{1}{(1 + KsT01 \times (0 - (-40)))} = \frac{1}{(1 - 0.00080108642578125 \times (0 - (-40)))} = 1.033104231
\]

\[
\alpha_{corr_{range2}} = 1
\]

\[
\alpha_{corr_{range3}} = 1 + KsT02 \times (CT3 - 0) = 1 - 0.00080108642578125 \times (160 - 0) = 0.871826172
\]

\[
\alpha_{corr_{range4}} = (1 + KsT03 \times (CT4 - CT3))
\]

\[
\alpha_{corr_{range4}} = (1 - 0.00080108642578125 \times (160 - 0)) \times (1 - 0.00080108642578125 \times (320 - 160))
\]

\[
\alpha_{corr_{range4}} = 0.76008087418
\]

11.2.2.9.1.3. Extended To range calculation

The input parameter for this calculation is the object temperature calculated in 11.2.2.9.

If \(T_0(12,16) < 0°C \) we are in range 1 and we will use the parameters \((KsT01, \alpha_{corr_{range1}}, \text{and } CT1 = -40°C) \)

If \(0°C < T_0(12,16) < CT3°C \) we are in range 2 and we will use the parameters \((KsT02, \alpha_{corr_{range2}}, \text{and } CT2 = 0°C) \)

If \(CT3°C < T_0(12,16) < CT4°C \) we are in range 3 and we will use the parameters \((KsT03, \alpha_{corr_{range3}}, \text{and } CT3 = 160°C) \)

If \(CT4°C < T_0(12,16) \) we are in range 4 and we will use the parameters \((KsT04, \alpha_{corr_{range4}}, \text{and } CT4 = 320°C) \)

\[
T_{extra_range(12,16)} = \frac{V_{IR(12,16)_COMPENSATED}}{\alpha_{comp(12,16)} \times \alpha_{corr_{range}} \times (1 + KsT0X \times (T_0(12,16) - CTX))} + T_{a-r} - 273.15
\]
12. Performance graphs

12.1. Accuracy

All accuracy specifications apply under settled isothermal conditions only. Furthermore, the accuracy is only valid if the object fills the FOV of the sensor completely.

Parameter definitions:

Frame accuracy is defined as average value of the all (768) pixels in the frame or for frame n can be expressed as:

$$\overline{T_o, frame(n)} = \frac{1}{768} \sum_{m=1}^{768} T_o(m, n)$$

$$Frame\ accuracy = \overline{T_o, frame(n)} - T_{target}$$

Non-uniformity is defined as the maximum deviation of each individual pixel reading vs. the absolute accuracy.

$$Non \ Uniformity = \text{MAX}(|T_o(m) - \overline{T_o, frame(n)}|)$$

Pixel absolute accuracy is defined as:

$$T_o,\ accuracy(n) = Frame\ accuracy + Non\ Uniformity$$

![Figure 17 Absolute temperature accuracy – MLX90640BAA (left) and MLX90640BAB (right)](image)

Example: If we assume that the sensor (BAA type, zone 1) is measuring a target at 80°C that would mean that there should be no pixel with error bigger than:

$$T_o,\ accuracy(n) = Frame\ accuracy + Non\ Uniformity = \pm 1 \pm 0.5 = \pm 1.5°C$$

NOTE: For best performance it is recommended to keep the supply voltage as accurate and stable as possible to 3.3V ± 0.1V
Figure 18 Different accuracy zones depending on device type (BAA on the left and BAB on the right)
Startup time

12.1.1. First valid data

After POR the first valid data is available after (depending on the selected refresh rate) $T_{valid,\,data}$ which is calculated as:

$$T_{valid,\,data} = 40 + 500, \text{ ms}$$
(Example refresh rate is 2Hz – the default value)

It is always subpage 0 to be measured first after POR then subpage 1 and so on alternating.

NOTE: In case one changes the refresh rate on the fly (by writing new values into device register (0x800D)) the settings will take place only after the subpage under measurement is finished.

![Diagram showing startup time and valid data](image)

12.1.2. Thermal behavior

Although electrically the device is set and running there is thermal stabilization time necessary before the device can reach the specified accuracy – up to 4 min.
12.2. Noise performance and resolution

There are two bits in the configuration register that allow changing the resolution of the MLX90640 measurements. Increasing the resolution decreases the quantization noise and improves the overall noise performance.

Measurement conditions for the noise are: \(T_0 = T_a = 25^\circ C \)

NOTE: Due to the nature of the thermal infrared radiation, it is normal that the noise will decrease for high temperature and increase for lower temperatures

![Figure 19 MLX90640B Ax noise vs refresh rate for different device types](image)

Not all pixels have the same noise performance. Because of the optical performance of the integrated lens, it is normal that the pixels in the corner of the frame are noisier in comparison with the sensors in the middle. The graphs below show the distribution of the noise performance versus the pixel position in the frame (pixel number)

![Figure 20 MLX90640BAA noise vs pixel and refresh rate at 1Hz and 2Hz](image)

![Figure 21 MLX90640BAA noise vs pixel and refresh rate at 4Hz, 8Hz and 16Hz](image)
Figure 22 MLX90640BAB noise vs pixel and refresh rate at 1Hz and 2Hz

Figure 23 MLX90640BAB noise vs pixel and refresh rate at 4Hz, 8Hz and 16Hz

<table>
<thead>
<tr>
<th>NETD (K)</th>
<th>1Hz RMS noise (temperature equivalent), all pixels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
</tr>
<tr>
<td>MLX90640</td>
<td></td>
</tr>
<tr>
<td>BAB</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Table 14 Noise performance
12.3. Field of view (FOV)

The specified FOV is calculated for the wider direction, in this case for the 32 pixels.

![Diagram](image)

Figure 24: Field Of View measurement

<table>
<thead>
<tr>
<th>FOV</th>
<th>X direction</th>
<th>Y direction</th>
<th>Central pointing from normal (X & Y direction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLX90640-ESF-BAA</td>
<td>110°</td>
<td>75°</td>
<td>5°</td>
</tr>
<tr>
<td>MLX90640-ESF-BAB</td>
<td>55°</td>
<td>35°</td>
<td>3°</td>
</tr>
</tbody>
</table>

Table 15 Available FOV options
13. Application information

13.1. Electrical considerations

As the MLX90640Bxx is fully I2C compatible it allows to have a system in which the MCU may be supplied with VDD=2.6V...5V while the sensor it's self is supplied from separate supply VDD1=3.3V (or even left with no supply i.e. VDD=0V), with the I2C connection running at supply voltage of the MCU.

![Figure 25 MLX90640 electrical connections](image)
13.2. Using the device in “image mode”

In some applications may not be necessary to calculate the temperature but rather to have just and image (for instance in machine vision systems). In this case it is not necessary to carry out all calculations which would save computation time or allow the one to use weaker CPU.

In order to get thermal image only following computation flow is to be used:

```
Supply voltage value calculation (common for all pixels) - 11.2.2.2

Ambient temperature calculation (common for all pixels) - 11.2.2.3

Gain compensation - 11.2.2.5.1

IR data compensation – offset, VDD and Ta - 11.2.2.5.3

IR data gradient compensation - 11.2.2.7

Normalizing to sensitivity - 11.2.2.8

Image (data) processing
```

Figure 26 Calculation flow in thermal image mode

14. Application Comments

Significant contamination at the optical input side (sensor filter) might cause unknown additional filtering/distortion of the optical signal and therefore result in unspecified errors.

IR sensors are inherently susceptible to errors caused by thermal gradients. There are physical reasons for these phenomena and, in spite of the careful design of the MLX90640Bxx, it is recommended not to subject the MLX90640Bxx to heat transfer and especially transient conditions.

The MLX90640Bxx is designed and calibrated to operate as a non-contact thermometer in settled conditions. Using the thermometer in a very different way will result in unknown results.

Capacitive loading on an I²C can degrade the communication. Some improvement is possible with use of current sources compared to resistors in pull-up circuitry. Further improvement is possible with specialized commercially available bus accelerators. With the MLX90640Bxx additional improvement is possible by increasing the pull-up current (decreasing the pull-up resistor values). Input levels for I²C compatible mode have higher overall tolerance than the I²C specification, but the output low level is rather low even with the high-power I²C specification for pull-up currents. Another option might be to go for a slower communication (clock speed), as the MLX90640Bxx implements Schmidt triggers on its inputs in I²C compatible mode and is therefore not really sensitive to rise time of thebus (it is more likely the rise time to be an issue than the fall time, as far as the I²C systems are open drain with pull-up).
Power dissipation within the package may affect performance in two ways: by heating the “ambient” sensitive element significantly beyond the actual ambient temperature, as well as by causing gradients over the package that will inherently cause thermal gradient over the cap.

Power supply decoupling capacitor is needed as with most integrated circuits. MLX90640Bxx is a mixed-signal device with sensors, small signal analog part, digital part and I/O circuitry. In order to keep the noise low power supply switching noise needs to be decoupled. High noise from external circuitry can also affect noise performance of the device. In many applications a 100nF SMD plus 1µF ceramic capacitors close to the Vdd and Vss pins would be a good choice. It should be noted that not only the trace to the Vdd pin needs to be short, but also the one to the Vss pin. Using MLX90640Bxx with short pins improves the effect of the power supply decoupling.

Check www.melexis.com for most recent application notes about MLX90640Bxx.
15. Mechanical drawings

15.1. FOV 55°

Figure 27 Mechanical drawing of 55° FOV device
15.2. FOV 110°

Figure 28 Mechanical drawing of 110° FOV device
15.3. Device marking

The MLX90640 is laser marked with 10 symbols as follows.

<table>
<thead>
<tr>
<th>0</th>
<th>A</th>
<th>A</th>
<th>xxxx</th>
<th>xx</th>
<th>Laser marking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 digits Split number</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 digits LOT number</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A FOV = 110°</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B FOV = 55°</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td></td>
<td>Device without thermal gradient compensation (TGC = 0 and may not be changed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
<td>Device with thermal gradient compensation (TGC = -4…+3.98)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>MLX90640</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Example: “0CA1010218” – Device type MLX90640BAA from lot 10102, sub LOT split 18 and Thermal Gradient Compensation activated.
16. Standard Information

Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to standards in place in Semiconductor industry.

For further details about test method references and for compliance verification of selected soldering method for product integration, Melexis recommends reviewing on our website the General Guidelines soldering recommendation. For all soldering technologies deviating from the one mentioned in above document (regarding peak temperature, temperature gradient, temperature profile etc.), additional classification and qualification tests have to be agreed upon with Melexis.

For package technology embedding trim and form post-delivery capability, Melexis recommends consulting the dedicated trim & forming recommendation application note: lead trimming and forming recommendations.

Melexis is contributing to global environmental conservation by promoting lead free solutions. For more information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction Of the use of certain Hazardous Substances) please visit the quality page on our website: http://www.melexis.com/en/quality-environment

17. ESD Precautions

Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products.

18. Revision history table

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>25/07/2016</td>
<td>Initial release</td>
</tr>
<tr>
<td>15/12/2016</td>
<td>Calibration data stored into EEPROM, pixel reading modes explained</td>
</tr>
<tr>
<td>17/01/2017</td>
<td>Some errors fixed</td>
</tr>
<tr>
<td>07/02/2017</td>
<td>Some calculations errors fixed</td>
</tr>
<tr>
<td>24/02/2017</td>
<td>Noise, FOV and accuracy graphs added, some inaccuracies fixed</td>
</tr>
<tr>
<td>02/03/2017</td>
<td>Overall rearranged, some typo and grammar mistakes fixed</td>
</tr>
<tr>
<td>18/05/2017</td>
<td>Two’s complement for IR data from RAM and CP, added outlier identification in EEPROM, added application information</td>
</tr>
<tr>
<td>07/07/2017</td>
<td>Slave address changed to 0x240F, default mode is chess, CP RAM address changed 0x0709 -> 0x0708 and 0x0729 -> 0x0728, resolution control included in calculations, PCB under TO can removed</td>
</tr>
<tr>
<td>30/08/2017</td>
<td>Laser marking added, Max number of fail pixels added, Measurement flow (continuous and step mode) added, FOV definitions updated</td>
</tr>
<tr>
<td>10/10/2017</td>
<td>Added a note regarding CP averaging. Add dimension tolerances in mechanical drawings. Spelling errors corrected</td>
</tr>
</tbody>
</table>
19. Contact

For the latest version of this document, go to our website at www.melexis.com.

For additional information, please contact our Direct Sales team and get help for your specific needs:

<table>
<thead>
<tr>
<th>Region</th>
<th>Telephone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe, Africa</td>
<td>+32 13 67 04 95</td>
<td>sales_europe@melexis.com</td>
</tr>
<tr>
<td>Americas</td>
<td>+1 603 223 2362</td>
<td>sales_usa@melexis.com</td>
</tr>
<tr>
<td>Asia</td>
<td></td>
<td>sales_asia@melexis.com</td>
</tr>
</tbody>
</table>

20. Disclaimer

The information furnished by Melexis herein ("Information") is believed to be correct and accurate. Melexis disclaims (i) any and all liability in connection with or arising out of the furnishing, performance or use of the technical data or use of the product(s) as described herein ("Product") (ii) any and all liability, including without limitation, special, consequential or incidental damages, and (iii) any and all warranties, express, statutory, implied, or by description, including warranties of fitness for particular purpose, non-infringement and merchantability. No obligation or liability shall arise or flow out of Melexis' rendering of technical or other services.

The Information is provided "as is" and Melexis reserves the right to change the Information at any time and without notice. Therefore, before placing orders and/or prior to designing the Product into a system, users or any third party should obtain the latest version of the relevant information to verify that the information being relied upon is current. Users or any third party must further determine the suitability of the Product for its application, including the level of reliability required and determine whether it is fit for a particular purpose.

The Information is proprietary and/or confidential information of Melexis and the use thereof or anything described by the Information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights.

This document as well as the Product(s) may be subject to export control regulations. Please be aware that export might require a prior authorization from competent authorities. The Product(s) are intended for use in normal commercial applications. Unless otherwise agreed upon in writing, the Product(s) are not designed, authorized or warranted to be suitable in applications requiring extended temperature range and/or unusual environmental requirements. High reliability applications, such as medical life-support or life-sustaining equipment are specifically not recommended by Melexis.

The Products sold by Melexis are subject to the terms and conditions as specified in the Terms of Sale, which can be found at https://www.melexis.com/en/legal/terms-and-conditions.

This document supersedes and replaces all prior information regarding the Product(s) and/or previous versions of this document.

Melexis NV © - No part of this document may be reproduced without the prior written consent of Melexis. (2016)

ISO/TS 16949 and ISO14001 Certified