Features and Benefits

- Wide operating voltage range from 3.5V to 24V
- Very high magnetic sensitivity
- CMOS technology
- Chopper-stabilized amplifier stage
- Low current consumption
- Open drain output
- AEC-Q100 Qualified
- Thin SOT23 3L and flat TO-92 3L
- Both RoHS Compliant packages

Applications

- Automotive, Consumer and Industrial
- Solid-state switch
- Brushless DC motor commutation
- Speed detection
- Linear position detection
- Angular position detection
- Proximity detection

Ordering information

<table>
<thead>
<tr>
<th>Product code</th>
<th>Temperature Code</th>
<th>Package Code</th>
<th>Option code</th>
<th>Packing form code</th>
</tr>
</thead>
<tbody>
<tr>
<td>US2882</td>
<td>E</td>
<td>SE</td>
<td>AAA-000</td>
<td>RE</td>
</tr>
<tr>
<td>US2882</td>
<td>E</td>
<td>UA</td>
<td>AAA-000</td>
<td>BU</td>
</tr>
<tr>
<td>US2882</td>
<td>K</td>
<td>SE</td>
<td>AAA-000</td>
<td>RE</td>
</tr>
<tr>
<td>US2882</td>
<td>K</td>
<td>UA</td>
<td>AAA-000</td>
<td>BU</td>
</tr>
<tr>
<td>US2882</td>
<td>L</td>
<td>SE</td>
<td>AAA-000</td>
<td>RE</td>
</tr>
<tr>
<td>US2882</td>
<td>L</td>
<td>UA</td>
<td>AAA-000</td>
<td>BU</td>
</tr>
</tbody>
</table>

Legend:

Temperature code:
- L (-40 to 150°C)
- E (-40 to 85°C)
- K (-40 to 125°C)

Package Code:
- SE = TSOT-23L
- UA = TO92-3L

Packing Form:
- BU = Bulk
- RE = Reel

Ordering Example: US2882ESE-AAA-000-RE

1. Functional Diagram

The Melexis US2882 is a bipolar Hall-effect switch designed in mixed signal CMOS technology.

The device integrates a voltage regulator, Hall sensor with dynamic offset cancellation system, Schmitt trigger and an open-drain output driver, all in a single package.

Thanks to its wide operating voltage range and extended choice of temperature range, it is suitable for use in automotive and consumer applications.

The device is delivered in a Thin Small Outline Transistor (TSOT) for surface mount process and in a Plastic Single In Line (TO-92 flat) for through-hole mount. Both 3-lead packages are RoHS compliant.
Contents

1. Functional Diagram ... 1
2. General Description .. 1
3. Glossary of Terms .. 3
4. Absolute Maximum Ratings ... 3
5. Pin Definitions and Descriptions .. 3
6. General Electrical Specifications .. 4
7. Magnetic Specifications .. 4
8. Output Behaviour versus Magnetic Pole ... 4
9. Detailed General Description .. 5
10. Unique Features ... 5
11. Performance Graphs ... 6
 11.1. Magnetic parameters vs. TA .. 6
 11.2. Magnetic parameters vs. VDD ... 6
 11.3. VDSon vs. TA ... 6
 11.4. VDSon vs. VDD .. 6
 11.5. IDD vs. TA ... 6
 11.6. IDD vs. VDD .. 6
 11.7. IOFF vs. TA ... 7
 11.8. IOFF vs. VDD ... 7
12. Test Conditions ... 7
 12.1. Supply Current ... 7
 12.2. Output Saturation Voltage ... 7
 12.3. Output Leakage Current .. 7
 12.4. Magnetic Thresholds .. 7
13. Application Information ... 8
 13.1. Typical Three-Wire Application Circuit ... 8
 13.2. Two-Wire Circuit ... 8
 13.3. Automotive and Harsh, Noisy Environments Three-Wire Circuit .. 8
14. Application Comments ... 8
15. Standard information regarding manufacturability of Melexis products with different soldering processes 9
16. ESD Precautions .. 9
17. Package Information ... 10
 17.1. SE Package (TSOT-3L) ... 10
 17.2. UA Package (TO-92 flat) ... 11
18. Contact ... 12
19. Disclaimer ... 12
3. Glossary of Terms

- **MilliTesla (mT), Gauss**: Units of magnetic flux density: 1mT = 10 Gauss
- **RoHS**: Restriction of Hazardous Substances
- **TSOT**: Thin Small Outline Transistor (TSOT package) – also referred with the Melexis package code “SE”
- **ESD**: Electro-Static Discharge
- **BLDC**: Brush-Less Direct-Current

4. Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>V_{DD}</td>
<td>28</td>
<td>V</td>
</tr>
<tr>
<td>Supply Current</td>
<td>I_{DD}</td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>V_{OUT}</td>
<td>28</td>
<td>V</td>
</tr>
<tr>
<td>Output Current</td>
<td>I_{OUT}</td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_3</td>
<td>-50 to 150</td>
<td>°C</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_J</td>
<td>165</td>
<td>°C</td>
</tr>
</tbody>
</table>

Table 1: Absolute maximum ratings

Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

<table>
<thead>
<tr>
<th>Operating Temperature Range</th>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Suffix “E”</td>
<td>T_A</td>
<td>-40 to 85</td>
<td>°C</td>
</tr>
<tr>
<td>Temperature Suffix “L”</td>
<td>T_A</td>
<td>-40 to 150</td>
<td>°C</td>
</tr>
</tbody>
</table>

5. Pin Definitions and Descriptions

<table>
<thead>
<tr>
<th>SE Pin No</th>
<th>UA Pin No</th>
<th>Name</th>
<th>Type</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>VDD</td>
<td>Supply</td>
<td>Supply Voltage pin</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>OUT</td>
<td>Output</td>
<td>Open Drain Output pin</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>GND</td>
<td>Ground</td>
<td>Ground pin</td>
</tr>
</tbody>
</table>

Table 2: Pin definitions and descriptions
6. General Electrical Specifications

DC Operating Parameters $T_A = 25^\circ C$, $V_{DD} = 3.5V$ to 24V (unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>V_{DD}</td>
<td>Operating</td>
<td>3.5</td>
<td>12</td>
<td>24</td>
<td>V</td>
</tr>
<tr>
<td>Supply Current</td>
<td>I_{DD}</td>
<td>$B < B_{RP}$</td>
<td>1.1</td>
<td>2.6</td>
<td>5</td>
<td>mA</td>
</tr>
<tr>
<td>Output Saturation Voltage</td>
<td>V_{DSon}</td>
<td>$I_{OUT} = 20mA$, $B > B_{DP}$</td>
<td>0.11</td>
<td>0.5</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Output Leakage Current</td>
<td>I_{OFF}</td>
<td>$B < B_{RP}$, $V_{OUT} = 24V$</td>
<td>0.01</td>
<td>10</td>
<td>-</td>
<td>μA</td>
</tr>
<tr>
<td>Output Rise Time</td>
<td>t_r</td>
<td>$R_I = 1k\Omega$, $C_S = 20pF$</td>
<td>-</td>
<td>0.25</td>
<td>-</td>
<td>μs</td>
</tr>
<tr>
<td>Output Fall Time</td>
<td>t_f</td>
<td>$R_L = 1k\Omega$, $C_L = 20pF$</td>
<td>-</td>
<td>0.25</td>
<td>-</td>
<td>μs</td>
</tr>
<tr>
<td>Maximum Switching Frequency</td>
<td>F_{SW}</td>
<td></td>
<td>-</td>
<td>10</td>
<td>-</td>
<td>kHz</td>
</tr>
<tr>
<td>SE Package Thermal Resistance</td>
<td>R_{TH}</td>
<td>Single layer (1S) Jedeck board</td>
<td>301</td>
<td>-</td>
<td>200</td>
<td>°C/W</td>
</tr>
<tr>
<td>UA Package Thermal Resistance</td>
<td>R_{TH}</td>
<td></td>
<td>301</td>
<td>-</td>
<td>200</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Table 3: Electrical specifications

7. Magnetic Specifications

DC Operating Parameters $V_{DD} = 3.5V$ to 24V (unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Point</td>
<td>B_{OP}</td>
<td>E spec. (T_A max = 85°C)</td>
<td>-3</td>
<td>6</td>
<td>-</td>
<td>mT</td>
</tr>
<tr>
<td>Release Point</td>
<td>B_{RP}</td>
<td></td>
<td>-6</td>
<td>3</td>
<td>-</td>
<td>mT</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>B_{HYST}</td>
<td></td>
<td>1.5</td>
<td>6</td>
<td>-</td>
<td>mT</td>
</tr>
<tr>
<td>Operating Point</td>
<td>B_{OP}</td>
<td>L spec. (T_A max = 150°C)</td>
<td>-3.5</td>
<td>6</td>
<td>-</td>
<td>mT</td>
</tr>
<tr>
<td>Release Point</td>
<td>B_{RP}</td>
<td></td>
<td>-6</td>
<td>3.5</td>
<td>-</td>
<td>mT</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>B_{HYST}</td>
<td></td>
<td>1.5</td>
<td>6</td>
<td>-</td>
<td>mT</td>
</tr>
</tbody>
</table>

Table 4: Magnetic specifications

Note: For typical values, please refer to the performance graphs in section 11

8. Output Behaviour versus Magnetic Pole

DC Operating Parameters $T_A = -40$ C to 150 C, $V_{DD} = 3.5V$ to 24V (unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions (SE)</th>
<th>OUT (SE)</th>
<th>Test Conditions (UA)</th>
<th>OUT(UA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>South pole</td>
<td>$B < B_{OP}$</td>
<td>High</td>
<td>$B > B_{OP}$</td>
<td>Low</td>
</tr>
<tr>
<td>North pole</td>
<td>$B > B_{OP}$</td>
<td>Low</td>
<td>$B < B_{RP}$</td>
<td>High</td>
</tr>
</tbody>
</table>

Table 5: Output behaviour versus magnetic pole

South pole

North pole

OUT = high

OUT = low (V_{DSon})

SE package

UA package

OUT = high

OUT = low (V_{DSon})
9. Detailed General Description

Based on mixed signal CMOS technology, Melexis US2882 is a Hall-effect device with very high magnetic sensitivity. It allows using generic magnets, weak magnets or larger air gap.

The chopper-stabilized amplifier uses switched capacitor technique to suppress the offset generally observed with Hall sensors and amplifiers. The CMOS technology makes this advanced technique possible and contributes to smaller chip size and lower current consumption than bipolar technology. The small chip size is also an important factor to minimize the effect of physical stress. This combination results in more stable magnetic characteristics and enables faster and more precise design.

The wide operating voltage from 3.5V to 24V, “L” and “E” operating temperature range and low current consumption make this device especially suitable for automotive and BLDC motor applications.

The output signal is open-drain type. Such output allows simple connectivity with TTL or CMOS logic by using a pull-up resistor tied between a pull-up voltage and the device output.

10. Unique Features

The US2882 exhibits bipolar magnetic switching characteristics. Therefore, it operates with both south and north poles.

![Latch characteristic diagram](image)

Typically, the device behaves as a latch with symmetric operating and release switching points \(B_{op} = B_{rp} \). This means magnetic fields with equivalent strength and opposite direction drive the output high and low.

Removing the magnetic field \((B \rightarrow 0) \) keeps the output in its previous state. This latching property defines the device as a magnetic memory.

Depending on the magnetic switching points, the device may also behave as a unipolar positive switch \((B_{op} \text{ and } B_{rp} \text{ strictly positive}) \) or negative switch \((B_{op} \text{ and } B_{rp} \text{ strictly negative}) \). That is the output can be set high and low by only using one magnetic pole. In such case, removing the magnetic field changes the output level.

![Unipolar positive switch characteristic diagram](image)

![Unipolar negative switch characteristic diagram](image)

In latch, positive or negative switch behaviour, a magnetic hysteresis \(B_{hyst} \) keeps \(B_{op} \) and \(B_{rp} \) separated by a minimal value. This hysteresis prevents output oscillation near the switching point.
11. Performance Graphs

11.1. Magnetic parameters vs. T_A

11.2. Magnetic parameters vs. V_{DD}

11.3. V_{DSon} vs. T_A

11.4. V_{DSon} vs. V_{DD}

11.5. I_{DD} vs. T_A

11.6. I_{DD} vs. V_{DD}
11.7. I_{OFF} vs. T_A

11.8. I_{OFF} vs. V_{DD}

12. Test Conditions

Note: DUT = Device Under Test

12.1. Supply Current

12.2. Output Saturation Voltage

Note 1 - The output saturation voltage $V_{\text{DS(on)}}$ is measured at $V_{\text{DD}} = 3.5\, \text{V}$ and $V_{\text{DD}} = 24\, \text{V}$.

Note 2 - The device is put under magnetic field with $B > B_{\text{op}}$.

12.3. Output Leakage Current

12.4. Magnetic Thresholds

Note 1 - B_{op} is determined by putting the device under magnetic field swept from B_{min} up to B_{max} until the output is switched on.

Note 2 - B_{op} is determined by putting the device under magnetic field swept from B_{min} down to B_{max} until the output is switched off.
13. Application Information

13.1. Typical Three-Wire Application Circuit

13.2. Two-Wire Circuit

Note:
With this circuit, precise ON and OFF currents can be detected using only two connecting wires.

The resistors RL and Rb can be used to bias the input current. Refer to the part specifications for limiting values.

\[B_{RP} : \ I_{OFF} = I_R + I_{DD} = V_{DD}/R_b + I_{DD} \]
\[B_{OP} : \ I_{ON} = I_{OFF} + I_{OUT} = I_{OFF} + V_{DD}/R_L \]

13.3. Automotive and Harsh, Noisy Environments Three-Wire Circuit

14. Application Comments

For proper operation, a 100nF bypass capacitor should be placed as close as possible to the device between the V_{DD} and ground pin.

For reverse voltage protection, it is recommended to connect a resistor or a diode in series with the V_{DD} pin. When using a resistor, three points are important:
- the resistor has to limit the reverse current to 50mA maximum (V_{CC} / R1 ≤ 50mA)
- the resulting device supply voltage V_{DD} has to be higher than V_{DD} min (V_{DD} = V_{CC} – R1.I_{DD})
- the resistor has to withstand the power dissipated in reverse voltage condition (P_{D} = V_{CC}^2 / R1)

When using a diode, a reverse current cannot flow and the voltage drop is almost constant (~0.7V). Therefore, a 1000/0.25W resistor for 5V application and a diode for higher supply voltage are recommended. Both solutions provide the required reverse voltage protection.

When a weak power supply is used or when the device is intended to be used in noisy environment, it is recommended that figure 13.3 from the Application Information section is used.
The low-pass filter formed by R1 and C1 and the zener diode Z1 bypass the disturbances or voltage spikes occurring on the device supply voltage V_{DD}. The diode D1 provides additional reverse voltage protection.
15. Standard information regarding manufacturability of Melexis products with different soldering processes

Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to following test methods:

Reflow Soldering SMD’s (Surface Mount Devices)

- IPC/JEDEC J-STD-020
 Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices
 (classification reflow profiles according to table 5-2)
- EIA/JEDEC JESD22-A113
 Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing
 (reflow profiles according to table 2)

Wave Soldering SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)

- EN60749-20
 Resistance of plastic-encapsulated SMD’s to combined effect of moisture and soldering heat
- EIA/JEDEC JESD22-B106 and EN60749-15
 Resistance to soldering temperature for through-hole mounted devices

Iron Soldering THD’s (Through Hole Devices)

- EN60749-15
 Resistance to soldering temperature for through-hole mounted devices

Solderability SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)

- EIA/JEDEC JESD22-B102 and EN60749-21
 Solderability

For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis.

The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board.

Melexis is contributing to global environmental conservation by promoting lead free solutions. For more information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction Of the use of certain Hazardous Substances) please visit the quality page on our website: http://www.melexis.com/quality.aspx

16. ESD Precautions

Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products.
17. Package Information

17.1. SE Package (TSOT-3L)

Notes:
1. Dimension “D” and “E1” do not include mold flash or protrusions. Mold flash or protrusion shall not exceed 0.15mm on “D” and 0.25mm on “E” per side.
2. Dimension “b” does not include dambar protrusion.

Marking:
Top side 2yw

2 = part number (US2882)
y = last digit of year
ww = calendar week

Hall plate location

This table in mm

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>A1</th>
<th>A2</th>
<th>D</th>
<th>E</th>
<th>E1</th>
<th>L</th>
<th>b</th>
<th>c</th>
<th>e</th>
<th>e1</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>–</td>
<td>0.025</td>
<td>0.85</td>
<td>2.80</td>
<td>2.60</td>
<td>1.50</td>
<td>0.30</td>
<td>0.30</td>
<td>0.10</td>
<td>0.95</td>
<td>1.90</td>
<td>0°</td>
</tr>
<tr>
<td>max</td>
<td>1.00</td>
<td>0.10</td>
<td>0.90</td>
<td>3.00</td>
<td>3.00</td>
<td>1.70</td>
<td>0.50</td>
<td>0.45</td>
<td>0.20</td>
<td>BSC</td>
<td>BSC</td>
<td>8°</td>
</tr>
</tbody>
</table>
17.2. UA Package (TO-92 flat)

Notes:
1. Mold flashes and protrusion are not included.
2. Gate burrs shall not exceed 0.127 mm on the top side.

Hall plate location

Notes:
1. All dimensions are in millimeters

Marking:
1st Line: U28 - Part number (US2881)
2nd Line: yww
 y - last digit of year
 ww - calendar week

This table in mm

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>J</th>
<th>L</th>
<th>L1</th>
<th>S</th>
<th>b1</th>
<th>b2</th>
<th>c</th>
<th>e</th>
<th>E1</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>2.80</td>
<td>3.90</td>
<td>1.40</td>
<td>0.00</td>
<td>2.51</td>
<td>14.0</td>
<td>1.55</td>
<td>0.63</td>
<td>0.35</td>
<td>0.43</td>
<td>0.35</td>
<td>2.51</td>
<td>1.24</td>
</tr>
<tr>
<td>max</td>
<td>3.20</td>
<td>4.30</td>
<td>1.60</td>
<td>0.20</td>
<td>2.72</td>
<td>15.0</td>
<td>1.75</td>
<td>0.84</td>
<td>0.44</td>
<td>0.52</td>
<td>0.44</td>
<td>2.57</td>
<td>1.30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>5°</td>
<td>5°</td>
<td>45°</td>
<td>3°</td>
</tr>
<tr>
<td>max</td>
<td>MAX</td>
<td>REF</td>
<td>REF</td>
<td>REF</td>
</tr>
</tbody>
</table>
18. Contact

For the latest version of this document, go to our website at www.melexis.com.

For additional information, please contact our Direct Sales team and get help for your specific needs:

<table>
<thead>
<tr>
<th>Region</th>
<th>Telephone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe, Africa</td>
<td>+32 13 67 04 95</td>
<td>sales_europe@melexis.com</td>
</tr>
<tr>
<td>Americas</td>
<td>+1 603 223 2362</td>
<td>sales_usa@melexis.com</td>
</tr>
<tr>
<td>Asia</td>
<td></td>
<td>sales_asia@melexis.com</td>
</tr>
</tbody>
</table>

19. Disclaimer

The information furnished by Melexis herein (“Information”) is believed to be correct and accurate. Melexis disclaims (i) any and all liability in connection with or arising out of the furnishing, performance or use of the technical data or use of the product(s) as described herein (“Product”) (ii) any and all liability, including without limitation, special, consequential or incidental damages, and (iii) any and all warranties, express, statutory, implied, or by description, including warranties of fitness for particular purpose, non-infringement and merchantability. No obligation or liability shall arise or flow out of Melexis’ rendering of technical or other services.

The Information is provided “as is” and Melexis reserves the right to change the Information at any time and without notice. Therefore, before placing orders and/or prior to designing the Product into a system, users or any third party should obtain the latest version of the relevant information to verify that the information being relied upon is current. Users or any third party must further determine the suitability of the Product for its application, including the level of reliability required and determine whether it is fit for a particular purpose.

The Information is proprietary and/or confidential information of Melexis and the use thereof or anything described by the Information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights.

This document as well as the Product(s) may be subject to export control regulations. Please be aware that export might require a prior authorization from competent authorities.

Melexis NV © - No part of this document may be reproduced without the prior written consent of Melexis. (2016)